
Original Paper

Inferring Destinations and Activity Types of Older Adults From
GPS Data: Algorithm Development and Validation

Sayeh Bayat1,2, BASc; Gary Naglie2,3,4,5,6, MD, FRCPC, FGSA; Mark J Rapoport7,8, MD, FRCPC; Elaine Stasiulis5,9,

MA; Belkacem Chikhaoui10, PhD; Alex Mihailidis1,2,11, PhD
1Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
2KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
3Department of Medicine, Baycrest Health Sciences, Toronto, ON, Canada
4Department of Medicine, University of Toronto, Toronto, ON, Canada
5Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
6Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
7Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
8Department of Psychiatry, University of Toronto, Toronto, ON, Canada
9Institute of Medical Science, University of Toronto, Toronto, ON, Canada
10Laboratoire en Informatique Cognitive et Environnements de Formation Research Institute, Department of Science and Technology, TELUQ University,
Montreal, QC, Canada
11Department of Occupational Therapy and Occupational Science, University of Toronto, Toronto, ON, Canada

Corresponding Author:
Sayeh Bayat, BASc
Institute of Biomaterials and Biomedical Engineering
University of Toronto
550 University Avenue
Toronto, ON
Canada
Phone: 1 416 597 3422 ext 7345
Email: sayeh.bayat@mail.utoronto.ca

Abstract

Background: Outdoor mobility is an important aspect of older adults’ functional status. GPS has been used to create indicators
reflecting the spatiotemporal dimensions of outdoor mobility for applications in health and aging. However, outdoor mobility is
a multidimensional construct. There is, as of yet, no classification algorithm that groups and characterizes older adults’ outdoor
mobility based on its semantic aspects (ie, mobility intentions and motivations) by integrating geographic and domain knowledge.

Objective: This study assesses the feasibility of using GPS to determine semantic dimensions of older adults’ outdoor mobility,
including destinations and activity types.

Methods: A total of 5 healthy individuals, aged 65 years or older, carried a GPS device when traveling outside their homes for
4 weeks. The participants were also given a travel diary to record details of all excursions from their homes, including date, time,
and destination information. We first designed and implemented an algorithm to extract destinations and infer activity types (eg,
food, shopping, and sport) from the GPS data. We then evaluated the performance of the GPS-derived destination and activity
information against the traditional diary method.

Results: Our results detected the stop locations of older adults from their GPS data with an F1 score of 87%. On average, the
extracted home locations were within a 40.18-meter (SD 1.18) distance of the actual home locations. For the activity-inference
algorithm, our results reached an F1 score of 86% for all participants, suggesting a reasonable accuracy against the travel diary
recordings. Our results also suggest that the activity inference’s accuracy measure differed by neighborhood characteristics (ie,
Walk Score).

Conclusions: We conclude that GPS technology is accurate for determining semantic dimensions of outdoor mobility. However,
further improvements may be needed to develop a robust application of this system that can be adopted in clinical practice.
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Introduction

With the growing population of older adults, the notion of aging
in place, defined as “the ability to live in one's own home and
community safely, independently, and comfortably,” is of
increasing importance [1]. Aging in place is desirable from both
individual quality-of-life and public health perspectives. Many
older adults prefer to age in place because it enables them to
preserve their independence, autonomy, and social connection
[2]. Furthermore, aging in place is favored by policy makers
and health providers because keeping people in their homes for
as long as possible can reduce institutional care costs [3].
Although most studies on aging in place focus on the home
environment, there is rising recognition about the importance
of neighborhoods and communities in older adults’ ability to
age in place [3-5]. Thus, many clinicians and researchers in the
field of environmental gerontology are in search of a better
understanding of older adults’ travel patterns in the outdoor
environment, a concept that will be referred to as outdoor
mobility throughout the rest of this paper.

A commonly used model that focuses on older adults’ outdoor
mobility is life space, which is defined as the geographical area
through which an individual moves [6]. To measure life space,
the spatial environment is divided into several concentric zones
(eg, bedroom, home, neighborhood, town, and out of town) and
frequency of travel into each zone is recorded. Life space is
traditionally measured through self-reported daily diaries or
recall-based questionnaires [6,7]. The traditional life-space
measures have many limitations. Travel diaries, for example,
place the burden of data collection on study participants, which
results in participants not recording trips that are too short or
are made at inconvenient times. On the other hand,
questionnaires require study participants to recall their
movements during the month prior to the assessment date, which
is particularly challenging for the cognitively impaired
population. To overcome these limitations, more recent studies
have used GPS data to create mobility indicators to assess life
space, including maximum distance travelled, number of trips
away from home, and area [8-11]. While most life-space studies
rely only on a few indicators that represent spatial and temporal
aspects of an individual’s mobility [12-14], it has become clearer
that mobility is a multidimensional construct [12,15,16]. Thus,
in order to understand the full range of properties that emerge
from mobility patterns, the construct must encapsulate the
spatial, temporal, and semantic dimensions. In the current
life-space mobility measures, semantic dimensions that would
enable an exploration of the reasons behind the patterns that
emerge in space and time are not included.

According to the travel demand model, travel is a derived
demand, meaning that individuals travel to specific destinations
in their environment in order to participate in certain activities
[17]. Older adults’ specific types of destinations and activities
are indicative of their financial, psychosocial, physical, and
cognitive status [18]. For example, participation in cognitively
demanding activities, such as going to a bank, or physically

demanding activities, such as playing tennis, can relay
information about the cognitive or physical health of the
individual, respectively. Furthermore, an understanding of
relevant destinations and activities of older adults is required
to design environments that support and target effective
interventions that promote older adults’ outdoor mobility [18].
Therefore, examining the destinations that are relevant to older
adults, as well as activities that older adults conduct at those
destinations, is critical to the comprehensive understanding of
their mobility behaviors.

However, the raw positioning data collected by GPS devices
do not provide any additional contextual information, such as
the places that people visit or the activities they perform. In
travel behavior research, this information is traditionally
collected through questionnaires where users are asked to
annotate their trajectories. In the last few years, studies have
increasingly aimed at automatically annotating raw GPS data
with activities performed by users. The most popular method
for automatically annotating GPS data in the existing travel
behavior research is the rule-based method [19-23]. The
available studies utilizing a rule-based method matched the GPS
data with a series of predefined heuristic rules to determine the
appropriate activity type. For example, Bohte and Maat [22]
used a distance measure as a rule to determine the location that
is being visited and the type of activity. They first obtained the
location where a trip ends. If this location was within a radius
of 50 m from a known location, it is assumed that this is the
location that the user visited; otherwise, it was flagged as
unknown. Furthermore, a number of studies used a probabilistic
method to infer activity type [24-26]. These studies calculated
the probability of participating in each of the potential activities
according to a predefined measure and then selected the most
probable activity type. For example, Furletti et al [27] used car
trajectories to infer the point of interest the user has visited.
They then inferred the activity performed using the category of
the point of interest and a probability measure based on the
gravity law. These existing studies, however, have only focused
on identifying destinations and inferring activity types at the
aggregated level and have failed to examine mobility at
individual levels.

Furthermore, there has been little work done to date on
characterizing older adults’ outdoor mobility according to its
semantic aspects, such as destinations and activities. One
approach entailed collecting activity-type information using
self-report questionnaires [28]. This approach depends on the
motivation and ability of the person to answer the questions
accurately. An alternative approach has been to use ecological
momentary assessments (EMAs) to classify types of activities.
For example, in one study, activities of older adults within both
residential and nonresidential environments were analyzed using
EMAs [4]. That study was conducted during the course of 4
days, where EMA questions appeared as text on participants’
iPhone screens for them to answer. The data in this study
included a sample of participants’ locations and activities within
particular time windows and, therefore, was not comprehensive.
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In addition, EMA procedures can be burdensome and time
consuming if the frequency of prompts increases [29]. Finally,
both traditional questionnaires and EMAs are usually completed
only a few times with each person and cannot effectively provide
a comprehensive and objective assessment over time [30]. To
date, however, no study has used an automated GPS-based
approach to characterize older adults’ outdoor mobility
according to its contextual information, such as destinations
and activities. This study aims to develop and validate an
inclusive and automated GPS-based outdoor mobility model
for older adults that (1) extracts ones’destinations and (2) infers
activity types conducted at the most relevant destinations.

Methods

Data Collection
A total of 5 individuals [31], 65 years of age or older, were
recruited from a registry of potential research participants that
is maintained at Baycrest Health Sciences in Toronto, Ontario.
Exclusion criteria included cognitive impairment as determined
by a Montreal Cognitive Assessment score of less than 26 [32],
significant functional limitations in activities of daily living
(ADL) or instrumental activities of daily living (IADL) [33],
and residing in assisted-living or senior housing. Informed
consent was obtained from all participants. Ethics approval was

obtained from the Baycrest Hospital Ethics Committee and the
University Health Network Ethics Committee.

Participants were introduced to the SafeTracks Prime Mobile
GPS device (SafeTracks GPS Canada) and instructed on how
to use and charge it. The Prime Mobile device is small (3 cm

5 cm 2 cm) and light (less than 100 g). It automatically
starts tracking when turned on, and its battery life lasts for about
8 hours of continuous tracking. Participants were asked to place
these devices in their pockets, purses, or bags, or to wear them
around their neck as a pendant. They were also provided with
a small booklet and were instructed to record details describing
all excursions from their home, including time and destination
information. All participants completed 4 weeks of GPS data
collection and travel diary recording. The 4-week study period
was selected based on the time period used in the traditional
life-space assessments [6,7].

The GPS device recorded location (ie, longitude and latitude
coordinates), speed, and heading direction with corresponding
time and date stamps. While in the motion state, the device
provided sensor readings at a frequency of one reading per
minute, and while in the nonmotion state, the device transitioned
into standby mode until motion was detected. Textbox 1
introduces the definitions and notations that are used throughout
this paper.

Textbox 1. Terminology used in this paper.

Definition 1: GPS Record (P) is the spatiotemporal location of the user in the form of (Lat, Lon, t, and v), where Lat and Lon are the latitude and
longitude coordinates, t is the date-time stamp, and v is the instantaneous speed.

Definition 2: Trajectory (T) is a set of GPS records that are ordered based on their date-time attributes t,

T = {P0, P1, ... , Pn}, where t0 < t1 < ... < tn

Definition 3: Stop (S) is a location at which the individual stays for more than a predefined time,

S = (Lat, Lon, Δt)

where Δt is the time the individual spent at the location, and the Lat and Lon coordinates are the centroid of all GPS points collected at the stop.

Since the stop measurements in the same location can vary, a stop cluster is defined.

Definition 4: Stop Cluster is a set of stops that belong to the same location.

Stop Detection

Algorithm
Two types of stops were considered when constructing a system
to find the geographical locations of relevant destinations (ie,
stops): (1) full signal and (2) no signal (see Figure 1). A
full-signal stop was a stop location that contains a set of
consecutive GPS records with no signal loss. The latitude and
longitude of a full-signal stop was the centroid of all the GPS
records in the stop. On the other hand, a no-signal stop was
detected in two cases: (1) at areas with obstructed GPS signal
and (2) when no motion is detected and the GPS device
transitions into power-saving mode. This stop type consists of
two GPS points: one immediately before and one immediately
after the signal loss. The distance between these two adjacent
points must be smaller than 150 meters. Otherwise, the signal
loss can be due to underground transportation. The latitude and
longitude of a no-signal stop was the centroid of the two GPS
records in the stop. The velocity threshold was neglected

because the GPS records in a no-signal stop may belong to the
trip prior to the stop and poststop.

The stop-detection method used three threshold values. First,
the time threshold (δt) was set to 3 minutes to disregard short
stops, such as stops at traffic lights, and to only detect the more
meaningful destinations. Second, the distance threshold (δd)
was selected to be 150 meters based on the average block size
in the Greater Toronto Area. Third, the speed threshold (δv) was
set to 2 m/s based on the SafeTracks GPS device
speed–recording accuracy and the average walking speed for
community-dwelling older adults ranging from 0.9 to 1.3 m/s
[34].

To detect full-signal stops, initially, the first GPS record in the
trajectory is added to the cluster. Then, each time a GPS record
(Pi) is read, three measures are evaluated: (1) the time interval
between the last GPS record (Pi–1) in the cluster and Pi, (2) the
distance between Pi–1 and Pi, and (3) the speed at Pi. If all values
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are less than their corresponding thresholds (δt, δd, and δv ), the
GPS record (Pi) is added to the cluster. Otherwise, we add the
cluster to the list of stops (S), set the previous cluster to be the
current cluster, and empty the current cluster.

To detect no-signal stops, we compute the distance and time
interval between each GPS record and its previous record in the
trajectory; if the extracted distance is less than the distance

threshold and the time interval is more than the time threshold,
a cluster of the two GPS records is added to the stop list.

Finally, when a cluster is added to the stop list, the distance and
time interval between the centroid of the cluster and the previous
cluster is computed; if the values are less than the corresponding
thresholds, the two clusters are merged, the previous cluster is
set to the new merged cluster, and the current cluster is emptied.

Figure 1. Stop types: (a) full-signal stop and (b) no-signal stop.

Evaluation
To evaluate the performance of the stop-detection algorithm,
the stop points recorded in the travel diary (SR) are compared
with the stop points extracted from the GPS data (SE). Figure 2
demonstrates different stop conditions. A true positive (TP)
refers to a stop location recorded in the travel diary that correctly
matches with a stop location extracted from the GPS data. We

find a match if the distance between the recorded stop and the
extracted stop is smaller than 150 meters. A false negative (FN)
stands for a stop point recorded in the travel diary that is not
extracted from the GPS data (ie, the algorithm considers it to
be part of a trip or the user forgot to take the GPS device). A
false positive (FP) refers to a stop point extracted from the GPS
data but not recorded in the travel diary. Finally, a true negative
(TN) occurs when no stop is extracted or recorded.

Figure 2. Comparison of the stops recorded in the travel diary versus the stops extracted from the GPS data.

Using the four stop conditions (ie, TP, TN, FP, and FN), the F1
score is determined to evaluate the performance of the
stop-detection algorithm:

F1 score = (2 precision recall) / (precision +
recall)

where precision is TP/(TP + FP) and recall is TP/(TP + FN).

Activity Inference

Algorithm

Home

To infer the home location of each participant, the algorithm
for density-based spatial clustering of applications with noise
(DBSCAN) was used [35]. DBSCAN has been successfully
used to find stop points with the most visits in GPS trajectories
[36]. Two parameters that affect the results in DBSCAN are the
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cluster radius (Eps) and the minimum number of points required
to form a cluster (MinPts). The MinPts parameter was set to 4
as suggested in Ester et al [35] for 2D data. To obtain the
optimal Eps value for each participant, we draw a k-distance
plot for k=4 and find the knee, which corresponds to a sharp

change of gradient along the curve [37]. The fourth-nearest
neighbor distance plot for participant 1 is presented in Figure
3. The knee point, which represents a change in density among
the stop points, is selected as the optimal Eps. Table 1
demonstrates the optimal Eps value for each participant.

Figure 3. Participant 1's fourth-nearest neighbor distance. Eps: cluster radius.

Table 1. Optimal cluster radius (Eps) value for each participant.

Eps, mParticipant

971

942

593

324

955

Other Activities

The activity-inference algorithm takes as input the list of stops
and outputs the most probable activity type at each stop location.
For each stop point (Si), a Nearby Search was invoked from the
Google Places application programming interface (API). The
search returned a list of places within a 150-meter radius of the
Si. Then, for each place, a Place Details search was invoked,
which returned details including place name, type, and opening
hours. The place was only considered if it was open during the
stop. Next, the place types were mapped into activity types

according to Table 2. If the Nearby Search returns nothing or
if the place type does not fall into any of the listed categories,
it would be placed into the Other category. To find the most
probable activity type at each stop, the gravity model was
implemented [27]. This model associated a probability to each
possible activity by taking into account the distance of each
place from the stop and the general characteristics of the stop
location. For example, if a stop is in an area with many places
that are mapped to food and few places that are mapped to
medical services, the gravity model gives more weight to food
as compared to medical services.
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Table 2. Mapping between place types and activities.

Place typeActivity category

Bakery, bar, cafe, food, meal takeaway, restaurant, and meal deliveryFood

Grocery and supermarketDaily shopping

Bookstore, clothing store, convenience store, hardware store, electronics store, furniture store, shopping mall, liquor store, pet
store, shoe store, and department store

Shopping

ATM (automatic teller machine), bank, car rental, car repair, finance, insurance, gas station, travel agency, post office, accounting,
beauty salon, courthouse, and laundry

Services

Bowling alley, casino, library, movie rental, movie theater, museum, park, spa, stadium, and lodgingLeisure

Dentist, hospital, pharmacy, physiotherapist, chiropractor, psychologist, naturopath, walk-in clinic, sleep lab, LifeLabsa, and

Dynacarea

Medical services

Church, Hindu temple, synagogue, and mosqueReligious

Gym and YMCASport

aLifeLabs and Dynacare are medical laboratory services companies based in Ontario.

Evaluation
From the TP stops, the ones annotated by the activity-inference
algorithm are compared to the ones declared by the participant
in the travel diary. For the activities annotated as Activity at
Home, the distances between the participant’s actual home
location and extracted home locations are computed.

Results

Participants
A total of 5 cognitively intact, community-dwelling individuals
completed 4 weeks (ie, 28 days) of GPS monitoring and travel
diary recording. Table 3 presents the summary statistics of the
travel diary recordings for each participant.

The average age of participants in the study sample was 73 years
(SD 6) (range 68-80); participants lived within the Greater
Toronto Area and were all active drivers. Study participants
had an average Montreal Cognitive Assessment (MoCA) score
of 27.8 (SD 1.8). All 5 participants received a score of 6 in ADL
and 8 in IADL, indicating the highest level of function. For
more details of the sample’s demographic characteristics,
including the Walk Score [38], refer to Table 4.

The sample of 5 consisted of 4 retired older adults (80%)
(Participants 2-5) and 1 older adult (20%) with a part-time job
(Participant 1). It should be noted that although employed,
Participant 1 was not working during the 4 weeks of the study.

Table 3. Summary statistics of 4 weeks of travel diary recordings for the participants.

Stops per day, mean (SD)Number of stopsParticipant

5.6 (2.5)1171

3.4 (1.5)892

3.5 (1.8)883

4.6 (1.9)1244

4.2 (1.9)1085
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Table 4. Sample demographic characteristics.

Walk ScoredDriving

status

Employment

status
IADLc

score

ADLb

score

SexMoCAa

score

Age

in years

Participant

65DrivingEmployed part time86Female26681

30DrivingRetired86Female26702

57DrivingRetired86Female30783

94DrivingRetired86Male29684

69DrivingRetired86Female28805

aMoCA: Montreal Cognitive Assessment.
bADL: activities of daily living. ADL scores ranged from 0 (lowest level of function) to 6 (highest level of function).
cIADL: instrumental activities of daily living. IADL scores ranged from 0 (lowest level of function) to 8 (highest level of function).
dWalk Score is a measure of access to walkable amenities, ranging from 0 (Car-Dependent) to 100 (Walker's Paradise) [38].

Stop Detection
We reached a global stop-detection F1 score of 87% for all
participants. The F1 score of each participant was computed
and presented in Figure 4. The scores suggest that destinations
of individuals can be detected with reasonable accuracy.

We further evaluated the stop detection by analyzing the
mobility patterns. Figure 5 shows the distribution of stop

locations recorded in the travel diary (left) versus the ones
extracted from GPS data (right) for Participant 1 over the 4
weeks of the study. Additionally, an envelope was built around
all stop points using the convex hull algorithm to represent the
extent of travel into the environment (ie, life-space area). From
Figure 5, it is clear that the two distributions are similar,
although some stop points are missing in the diary plot.

Figure 4. Stop-detection F1 scores for participants 1 to 5 (P1-P5).
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Figure 5. Comparison of (a) stops recorded in the travel diary versus (b) stops extracted from the GPS data for Participant 1.

Home and Activity Inference
Table 5 presents the distances between the participants’ actual
home locations and extracted home locations. On average, the
extracted home locations were within a 40.18-meter (SD 1.18)
distance of the actual home locations.

For all activity types including activities at home, F1 scores
were obtained, which determine the percentage of activities
correctly classified with respect to the activities recorded in the
travel diary. Each participant’s score is presented in Table 6. A
global F1 score of 86% was reached for all participants.

Table 5. Distances between the actual home locations and extracted home locations.

Distance, mParticipant

6.601

50.32

19.93

20.44

76.75

Table 6. Activity inference’s F1 score.

Number of stopsF1 scoreParticipant

740.891

790.902

1010.863

950.794

870.865

The scores suggest that we can infer activity types with
reasonable accuracy for all participants. It can be demonstrated
that the algorithm reached its lowest score for Participant 4. To
understand the reason behind this, the neighborhood
characteristics of each participant’s destinations were examined
using Walk Score, a measure of access to walkable amenities,
ranging from 0 (Car-Dependent) to 100 (Walker's Paradise)
[38]; the distribution of scores are shown in Figure 6. It can be

demonstrated that for Participant 4, all destinations are located
in neighborhoods with Walk Score values of greater than 80.

Furthermore, for personalized evaluation of the
activity-inference algorithm, plots showing the percentage of
activities that were inferred from the GPS data and declared in
the travel diary for all 5 participants and each activity category
are presented in Figure 7. In general, the percentage of inferred
activities and percentage of declared activities follow a similar
trend.
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Figure 6. Distribution of Walk Scores of each participant’s (P) destinations, as calculated by Walk Score [38]. A score of 0-24 or 25-49 is considered
Car-Dependent, a score of 50-69 is considered Somewhat Walkable, a score of 70-89 is considered Very Walkable, and a score of 90-100 is considered
Walker's Paradise.

Figure 7. Comparison of the number of activity types in the travel diary versus the ones inferred from the GPS data for Participants 1 to 5 (P1-P5).

In order to further demonstrate the effects of neighborhood
characteristics on the performance of activity inference, the
out-of-home destinations were first placed into five groups
according to their Walk Score [39]: (1) Walker’s Paradise
(90-100), where most errands can be accomplished on foot, and
many people get by without owning a car; (2) Very Walkable
(70-89) areas, where it is possible to accomplish most errands
without driving; (3) Somewhat Walkable (50-69) areas, where
some amenities are within walking distance, but many daily
errands still rely on public transportation or driving; (4)

Car-Dependent (25-49) areas, where a few destinations are
within walking distance, but most activities require driving or
public transportation; and (5) Very Car-Dependent (0-24), where
no neighborhood destinations are within walking range. Then,
the average F1 score of the activity-inference algorithm in each
group was determined. Table 7 illustrates that by moving from
neighborhoods with a high density of amenities to
neighborhoods with a low density of amenities, the performance
of the activity-inference algorithm improves.
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Table 7. Effects of Walk Score on performance of the activity-inference algorithm.

Number of stopsF1 scoreWalk ScoreaCategory

580.5890-100Walker’s Paradise

870.7670-89Very Walkable

460.8350-69Somewhat Walkable

220.7925-49Car-Dependent

240.960-24Very Car-Dependent

aWalk Score is a measure of access to walkable amenities [38].

Discussion

Principal Findings
This paper presents a framework that allows classification of
semantic aspects of outdoor mobility including destination and
activity type. This framework is complementary to the
GPS-based mobility indicators used in the literature to assess
spatial and temporal facets of outdoor mobility and can enhance
the understanding of older adults’ outdoor mobility behavior.

The results show that, on average, 86% of activity types,
including home activities, recorded in the travel diaries were
correctly inferred. The performance of the activity-inference
algorithm, however, depends on the neighborhood characteristics
of destinations. If a destination is in a neighborhood with a high
Walk Score (ie, Very Walkable or Walker’s Paradise) where
places are densely positioned, the algorithm can have difficulty
identifying the correct places and the corresponding activity
types; however, for destinations in less-walkable neighborhoods
with a low Walk Score (ie, Very Car-Dependent,
Car-Dependent, or Somewhat Walkable), the algorithm
performed better. This pattern further hinders the performance
of the algorithm when a participant’s primary residence is in a
high–Walk Score neighborhood, where their destinations are
mostly concentrated within the same area, as illustrated with
Participant 4’s results in Figure 6. This renders the algorithm
unable to precisely draw inferences, given the high-density life
space, ultimately resulting in a lower F1 score. Furthermore,
looking into the Walk Score of each participant’s destinations
(see Figure 6), it can be observed that among our 5 participants,
Participant 4’s destinations were positioned in locations with a
higher Walk Score, and the algorithm reached the lowest
activity-inference F1 score for this participant.

It is important to note that there are challenges associated with
using travel diaries as ground truth. Participants’ compliance
with the diaries tends to decline over time. Due to the burden
of manual data recording, participants may avoid or forget to
record trips that are too short or that are made at inconvenient
times. By examining the distributions of recorded and extracted
stop locations in Figure 5, it can be observed that more stops
were extracted from the GPS data in comparison to the stops
recorded in the diary, suggesting that some stops in the GPS
data were not recorded in the travel diary.

Furthermore, travel diaries included the street addresses of the
destinations. In order to build ground truth of the destinations,
we first geocoded each street address using the Google Maps

API. Given a street address, Google Maps API returned the
latitude and longitude coordinates. However, this process is not
always straightforward. For example, in the cases where the
recorded address in the diary is incomplete, the correct
coordinate may not be determined. To minimize these
ambiguities, during the digitizing process of the travel diaries,
the recorded addresses were verified. Since a verified address
corresponds to a unique geographical coordinate, the
destinations that were visited multiple times had the exact same
latitude and longitude coordinates and are completely
overlapping in Figure 5. This is not the case for the stops
extracted from the GPS data. The GPS device does not record
exactly the same coordinate for a unique destination. Even if
the participant is staying at the same location for some time,
the GPS records can vary by up to 15 meters. Therefore, in the
GPS data, the coordinates corresponding to the same physical
location can vary. This can be clearly observed in Figure 5
where there are multiple stops in close proximity belonging to
the same location.

The mapping between the place types and activity categories is
another important issue. The activity categories are inferred
based on the place types available on the Google Maps.
However, there are some occasions where the activities
conducted at a specific place cannot be uniquely determined.
For example, playing golf with some friends can be considered
as Sport or Leisure activity. On the other hand, due to the
limitations of GPSs in indoor settings, for some multipurpose
locations the correct activity type cannot be inferred. For
example, a movie theater inside a shopping center can be
identified as a Shopping activity instead of a Leisure activity.
This issue can be addressed in future studies by having a hybrid
system that relies on a Wi-Fi positioning system for indoor
tracking and GPS for outdoor tracking.

Our proposed model outperforms the existing activity-inference
techniques. One major advantage of the proposed model is that
it does not require any prior information regarding users'
most-visited destinations. Most of the available techniques for
inferring activity types from raw trajectories involve some initial
data collection at the time of recruitment. These studies collect
the addresses of each participant’s most-visited locations, such
as home, workplace, school, or the frequently used grocery
stores [20-22], and claim that these locations yield more than
60% of each participant’s activities [21]. Our presented model,
however, is fully autonomous and uses a density-based
clustering method to extract the most-visited destinations of
each participant. This improvement is particularly important
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for exploring activity profiles of the older adult population
because their most-visited destinations are not always an
educational establishment or workplace. Another advantage is
that while most of the prevailing techniques use a small list of
points of interest to infer activity types [20,22], our model takes
advantage of the Google Places API system, which is currently
the most comprehensive dataset of points of interest.
Additionally, while most studies use a uniform probability
measure to select the most appropriate activity category
[21,22,25], our model implemented a gravity-based approach
similar to the method introduced in Furletti et al [27] to select
the most probable activity category for each destination.

Furthermore, most studies that present empirical results of
activity-inference methods only focus on car trips [24,26,27].
The GPS data used in this study were collected by participants
during their out-of-home trips using various modes of
transportation. It is worth noting that although the gravity-based
probability measure used to infer activity types in our study was
similar to the approach introduced in Furletti et al [27], our
results achieved a higher accuracy. This is because in Furletti
et al [27], they used positioning data collected by tracking
devices installed in cars. In this case, the identification of the
stop locations can become problematic because a car usually
cannot enter inside the stop location, meaning that the participant
needs to park the car and then walk to the destination, which
will not be tracked by the GPS device. In our study, however,
the GPS devices were being carried by the participants inside
all the stop locations they visited. Furthermore, our
activity-inference algorithm also discusses the detection of the
home location, which was not included in Furletti et al [27].

Limitations
The findings should be understood in light of some inherent
limitations within this study, which can be addressed in future
research. First, the small sample size in this study, although
effective for demonstrating the feasibility of the developed
algorithms [31], is not representative of the population and is,
thus, not suitable for statistical analysis of the population.
Further studies on larger sample sizes are required in order to
comprehensively analyze the activity profiles of older adult
populations. Second, a cutoff of 65 years of age was used in
this study, resulting in a sample age range of 68-80 years. This
wide age range along with the small sample size prohibited
analysis on age-related changes in the activity profiles of older
adults. Future studies can divide the older adult population into

three subgroups—the young-old (65-74 years), the middle-old
(75-84 years), and the old-old (over 85 years)—and investigate
the mobility and activity profile of each subgroup separately.
Third, all the participants were from the Greater Toronto Area.
Further research is required on older adults from a set of
representative locations that reflect the climatic, socioeconomic,
and geographic diversity of the older adult population. Finally,
due to recruitment challenges, our sample contained an
unbalanced sex distribution (ie, 1 male and 4 females), which
prohibited any statistical analysis by sex or gender. Future
studies should examine gender differences, since they may be
attributable to a variety of interrelated factors, including
differences in perceptions of safety and cultural norms regarding
outdoor mobility.

Conclusions
In environmental gerontology research, GPS devices are
becoming increasingly more common to accurately and
continuously measure older adults’ outdoor mobility, thereby
addressing limitations of traditional self-reported measures,
such as recall biases. Outdoor mobility, however, is a
multidimensional concept and it is challenging to characterize
it comprehensively with only spatiotemporal indicators derived
from GPS data.

In this paper, we extend the literature on older adults’ mobility
models through development and validation of a framework
that relies on GPS data to capture older adults’ travel
destinations (ie, stop points) and activity types. We have
performed a comparison with ground truth based on travel
diaries, and we have evaluated in detail the performance of the
implemented stop-detection and activity-inference algorithms.
Our results indicate that it is possible to extract destinations and
infer activity types from GPS data with reasonable accuracy.

This paper encourages incorporation of GPS-based mobility
indicators that reflect the semantic dimension of individuals’
outdoor mobility into future health- and aging-related research.
This approach fosters a better understanding of what aspects of
mobility are key to healthy aging. It also shows great potential
in examining the impact of interventions and long-term
monitoring of social connection, functionality, and quality of
life. Future research should aim to utilize GPS technology to
assess older adults’ transportation modes in order to provide
insights about different ways of conceptualizing older adults’
environmental exposure.
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