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Abstract.
Background: Driving behavior as a digital marker and recent developments in blood-based biomarkers show promise as a
widespread solution for the early identification of Alzheimer’s disease (AD).
Objective: This study used artificial intelligence methods to evaluate the association between naturalistic driving behavior
and blood-based biomarkers of AD.
Methods: We employed an artificial neural network (ANN) to examine the relationship between everyday driving behavior
and plasma biomarker of AD. The primary outcome was plasma A�42/A�40, where A�42/A�40 < 0.1013 was used to define
amyloid positivity. Two ANN models were trained and tested for predicting the outcome. The first model architecture only
includes driving variables as input, whereas the second architecture includes the combination of age, APOE �4 status, and
driving variables.
Results: All 142 participants (mean [SD] age 73.9 [5.2] years; 76 [53.5%] men; 80 participants [56.3%] with amyloid
positivity based on plasma A�42/A�40) were cognitively normal. The six driving features, included in the ANN models, were
the number of trips during rush hour, the median and standard deviation of jerk, the number of hard braking incidents and
night trips, and the standard deviation of speed. The F1 score of the model with driving variables alone was 0.75 [0.023]
for predicting plasma A�42/A�40. Incorporating age and APOE �4 carrier status improved the diagnostic performance of the
model to 0.80 [0.051].
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Conclusion: Blood-based AD biomarkers offer a novel opportunity to establish the efficacy of naturalistic driving as an
accessible digital marker for AD pathology in driving research.
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INTRODUCTION

Alzheimer’s disease (AD), the most common type
of dementia, is a progressive, debilitating disease and
has emerged as an urgent public health crisis given
the growing numbers of older adults worldwide [1].
In the United States, it is anticipated that the pop-
ulation of Americans with either symptomatic AD
or mild cognitive impairment will reach 15 million in
2060 [2]. A similar trend is expected in Canada as the
number of people with symptomatic AD is projected
to triple by 2050 [3].

Detection of AD brain pathology is important for
diagnosis, prognosis, planning, and development of
therapeutic treatments. In fact, current evidence sug-
gests that cognitively normal individuals with AD
brain pathology, who are described as having pre-
clinical AD, may benefit from disease-modifying
treatments [2]. Recent failures of double-blind
placebo-controlled Phase III studies of disease-
modifying therapies for AD may result from
administering the drugs too late in the disease process
[4]. There is an urgent need to diagnose individu-
als earlier in the disease process so that interventions
might slow or prevent further progression [5].

The current “gold-standard” assessments of AD
brain pathology are obtained by measuring proteins
in cerebrospinal fluid (CSF) or by positron emission
tomography (PET) [6], which presents challenges in
widespread use due to cost, burden, and availability
[7, 8]. More recently, several studies have shown that
blood-based biomarkers could aid in AD diagnosis by
identifying individuals with brain amyloid pathology,
and had relatively high agreement with amyloid PET
[9, 10]. Plasma biomarkers may enable more cost-
effective and less burdensome evaluation of AD brain
pathology compared to conventional AD biomarkers.

At the same time, increasing evidence suggests
that the preclinical stage of AD may have a sub-
tle functional signature that is reflected in changes
in everyday behavior [11]. These subtle every-
day behaviors, when captured continuously using
wearable and mobile technology, may serve as non-
invasive behavioral markers to track changes in
preclinical AD. Our previous work indicates that
changes in driving, a complex activity that involves

both cognitive and functional abilities, can iden-
tify preclinical AD and precedes the emergence of
dementia symptoms [12–17]. These previous stud-
ies assessed AD brain pathology using a variety of
CSF or PET biomarkers among older adults who are
cognitively normal. One study using on-road driv-
ing tests found that older drivers with higher values
of CSF tau/A�42 and phosphorylated tau/A�42 ratios
were much faster to receiving a time to a rating of
marginal or fail on the driving test [12]. Another study
of driving cessation over a 24-year period showed
that older drivers with more abnormal CSF biomarker
measurements predicted a faster time to driving ces-
sation [17]. A pilot study using in-vehicle data loggers
reported individuals with positive amyloid-PET sta-
tus were likely to take fewer trips overall, drive
more miles per trip on average, and have fewer trips
with aggressive behaviors [14]. More recently, we
developed a machine learning-based neurobehavioral
digital marker, based on a combination of everyday
driving behavior and age that was able to predict pre-
clinical AD as determined by CSF A�42/A�40 with
high recall (84%), precision (94%), accuracy (86%),
and area under the curve score (0.94) [16].

In this context, both everyday driving behavior and
blood-based biomarkers show enormous potential for
developing a widespread solution for the early iden-
tification of AD. The objective of the present study is
to use artificial intelligence methods to evaluate the
association between naturalistic driving behavior and
blood-based biomarkers of AD.

METHODS

Study population

Data was collected as part of the longitudinal
studies on aging and dementia conducted at the
Washington University Knight Alzheimer Disease
Research Center and in longitudinal driving studies
(R01AG056466, R01AG067428, R01AG068183).
Participants were required to be age 60 years or
older. cognitively normal as determined by the Clini-
cal Dementia Rating® (CDR® = 0) [18], have a valid
driving license, and a compatible vehicle. Participants
had no significant chronic disease at baseline such as
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cancer, mood disorders, or neurological disease that
would otherwise interfere with this ability to drive.

Collection of everyday driving data

Continuous naturalistic driving data were col-
lected using the global positioning system and
accelerometer-based Driving Real-world In-Vehicle
Evaluation System (DRIVES) as individuals drove
daily in their own vehicle and in their own community
environments [14, 19]. The DRIVES methodology
has been previously published [14, 20, 21]. The
“chip” used in this passive data collection system is
small and unobstructive. It plugs into the On-Board
Diagnostic II port of each participant’s vehicle and
within 30 s after installation, it starts capturing data on
date, time, speed (MPH), longitude/latitude of where
a vehicle is driven, and adverse behavior (speeding,
hard braking, sudden acceleration). Data transmis-
sion occurs from the moment ignition is turned on
until it is turned off, with a collection interval set at
30 s. For each participant, one year of driving data
was included for analysis in this study, to account for
seasonal variability in driving patterns. The one-year
driving monitoring period for each participant was
selected to start from the month following the par-
ticipant’s plasma collection date. If driving data was
not available for that date, the one-year period clos-
est to and maximum of two years from the plasma
collection date was selected. All participants pro-
vided written informed consent, and ethics approval
was granted by the Washington University Human
Research Protection Office.

Driving exposures

The complete list of variables currently obtained
from the DRIVES chip is reported in Table 1. This
list is an extension of a partial list of variables
obtained from the DRIVES chip that has been pub-
lished [16]. Indicators were selected that were most
frequently used in these studies and could be inferred
from the DRIVES chip data. Spatial and tempo-
ral indicators were selected based on our previous
work that used GPS technology to measure older
adults’ outdoor mobility [22, 23]. To select the driv-
ing behavior variables, we searched the literature for
articles that studied the on-road driving performance
of older adults and individuals with mild cognitive
impairment or AD [24–26]. We classified the driving
variables into three groups: 1) spatial metrics describ-
ing spatial patterns of movements such as entropy

and radius of gyration, 2) temporal metrics describing
temporal patterns of movement such as the number
of night trips, and 3) behavior metrics measuring the
on-road performance of the drivers such as speed
and acceleration. Finally, all variables are either com-
puted over a trip or a month. Trip-wise measures are
then aggregated and averaged monthly.

Plasma collection and analysis

Blood samples from each participant were col-
lected at a single session at approximately 8 AM
following overnight fasting [9]. Plasma A�42 and
A�40 were measured in the C2 N Diagnostics com-
mercial laboratory with immunoprecipitation–mass
spectrometry assay [27]. All assays were performed
by personnel who were blinded to the participant’s
demographic data.

Other exposures

All participants underwent APOE genotyping.
The main analysis included APOE �4 carrier status
(i.e., whether an individual carried one or more �4
alleles). The APOE allele was determined by geno-
typing rs7412 and rs429358 with TaqMan genotyping
technology [28]. All participants also completed a
structured interview regarding socio-demographic
characteristics and the Mini-Mental State Examina-
tion (MMSE) [29].

Outcomes

The primary outcome was plasma A�42/A�40,
which is highly concordant with amyloid PET status
[10]. A�42/A�40 < 0.1013 was used to define amy-
loid positivity. This cut-off value is determined in
an overlapping cohort of research participants at the
Knight Alzheimer Disease Research Center. In this
cohort, plasma A�42/A�40 < 0.1013 has yielded the
highest combined sensitivity and specificity (Youden
Index) for amyloid PET status (see the Supplemen-
tary Methods for more information). Further, in the
Supplementary Results, plasma Amyloid Probabil-
ity Score (APS) was studied as an auxiliary outcome
measure. APS is a modelled score incorporating
plasma A�42/A�40, age, and apoE prototype, where
the APS > 15 has a higher concordance with amyloid
PET [8, 27].
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Table 1
The complete list of naturalistic driving variables

Variable Description Category Aggregation Scale

Num. trips Number of trips Spatial Monthly
Radius of gyration Typical distance travelled Spatial Monthly
Entropy Entropy of travelled destinations Spatial Monthly
Night trips Number of trips after sunset Temporal Monthly
Eve. trips Number of trips during the evening rush hour

(4pm – 6 pm)
Temporal Monthly

Morn. trips Number of trips during the morning rush hour
(7am – 9am)

Temporal Monthly

Dist. travelled Total distance travelled in kilometers Spatial Monthly
Hard braking Base 10 logarithm of number of hard braking

events
Behavior Trip-wise

Hard-core braking Base 10 logarithm of number of hard-core
braking events

Behavior Trip-wise

Sudden Acceleration Number of sudden accelerations Behavior Trip-wise
Speeding Number of speeding events where the speed

exceeds the speed limit by more than 10 miles
per hour

Behavior Trip-wise

Under-speeding Number of under-speeding events where the
speed falls below the speed limit by more than
10 miles per hour

Behavior Trip-wise

Duration Trip duration in minutes Temporal Trip-wise
Med. Speed Median of speed Behavior Trip-wise
SD Speed Standard deviation of speed Behavior Trip-wise
Med. Acceleration Median of acceleration Behavior Trip-wise
SD. Acceleration Standard deviation of acceleration Behavior Trip-wise
Med. Jerk Median of jerk Behavior Trip-wise
SD. Jerk Standard deviation of jerk Behavior Trip-wise
Winter trips Number of winter trips averaged per month Temporal Monthly
Waiting time Average waiting time between two consecutive

trips
Temporal Monthly

Max. dist. from home Maximum distance travelled from home Spatial Monthly
Jump length Average jump length between two consecutive

stops
Spatial Monthly

Straight line distance Straight line distance from start point to the
destination

Spatial Monthly

Statistical and artificial intelligence approach

Intergroup differences in demographic and clinical
measures were assessed using analyses of variance
(ANOVAs), while associations among categorical
variables were checked using analyses of contingency
tables (χ2 tests).

We employed an artificial neural network (ANN),
through Keras [30] and TensorFlow [31] packages
in Python, to examine the more complex relation-
ship between everyday driving behavior and plasma
A�42/A�40 status. ANN is a computational model
that is inspired by the structure of the human brain.
It is made up of many small units termed artifi-
cial neurons that are connected by coefficients, also
known as weights, which form the network’s struc-
ture. If the neurons are not directly connected to the
inputs or outputs of the network, they are called hid-
den neurons. The number of hidden neurons in an

ANN can be seen as a hyperparameter that can be
adjusted to control the capacity of the network and
avoid overfitting or underfitting. In this analysis, the
ANN technique was selected because of its ability
to model complex non-linear relationships and han-
dle large amounts of noisy data. These models are
extensively used to make predictions from complex
non-linear GPS trajectory datasets [32–34]. Here,
two ANN models were trained and tested for pre-
dicting the outcome (i.e., plasma A�42/A�40 status).
The architectures of these models are depicted in
Fig. 1. The first model architecture only includes
driving variables as input, whereas the second archi-
tecture includes the combination of age, APOE �4
status, and driving variables. The second architecture
includes age and APOE �4 to improve the model’s
performance, as they are both well-established risk
factors for AD [35]. The values of each feature were
standardized by their mean and standard deviation.
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Fig. 1. The architecture of the selected ANN. (a) The architecture of ANN with driving variables as input, (b) the architecture of ANN with
driving variables, age, and APOE �4 carrier status.

The neural network architectures consist of up to two
densely connected feed-forward hidden layers with
sizes ranging from 32 to 16 neurons each. Rectified
linear units (ReLU) were set as the activation func-
tion for the two hidden layers and Sigmoid was set
as the activation function for the output layer. Binary
Cross Entropy (i.e., Log Loss) was set as the loss
function which computes the negative average of the
log of corrected predicted probabilities used for clas-
sification problems. Each model training session was
limited to 100 epochs, or 100 passes of the input data,
and training would be stopped, to prevent overfitting,
if there was no improvement to the loss function in
10 consecutive epochs. Each month record for each
participant was considered an independent data point.
The data was split into 5 partitions and each model
was trained 5 times using 4 partitions as training set
and the remaining partition as the validation set. To
avoid data leakage between the train and validation
set, we split the data at participant level and ensured
data points from one participant will only be in either
the train set, or the validation set, and not both. The
best models were defined as the ones with the high-
est accuracy on the validation sets. Average precision,
recall, F1 score, and the area under the receiver oper-
ating curve (ROC-AUC) from 5-fold cross-validation
were calculated for comparison of the performance of
the models. In binary classification, precision, recall,

and F1 score are used to evaluate the performance of a
model by comparing the predicted labels to the actual
labels. The precision score represents the proportion
of true positive predictions (i.e., participants with pos-
itive plasma A�42/A�40 status that were correctly
classified as positive) among all positive predictions
made (i.e., all participants classified to have positive
plasma A�42/A�40 status by the model), while recall
score represents the proportion of true positive pre-
dictions among all participants with positive plasma
A�42/A�40 status. A high precision means that there
are fewer false positive predictions (i.e., cases where
a participant has negative plasma A�42/A�40 status
but is classified as positive), while a high recall means
that there are fewer false negatives (i.e., cases where
a participant has positive plasma A�42/A�40 status
but is classified as negative). F1 Score represents the
harmonic mean of precision and recall, providing a
single metric to give an overall measure of a model’s
performance.

Furthermore, to evaluate the importance of each
input feature and perform feature selection, we
first addressed the multicollinearity by removing
highly correlated driving variables (Pearson correla-
tion coefficient of greater than 0.6). Then, we repeated
the 5-fold cross-validation process described above
but this time we employed a relief-based feature
selection technique to identify features relevant for
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each outcome prediction [36]. Features that yielded
higher weight were deemed as more important. All
the analyses were repeated for APS status. Since
the APS score is a proprietary algorithm, results are
reported in the Supplementary Results.

In summary, in this study, we hypothesized that
the ANN model with driving variables alone and
the ANN model with driving variables with age and
APOE �4 status both can distinguish older drivers
with a positive plasma A�42/A�40 status from older
drivers with negative plasma A�42/A�40 status.

RESULTS

Socio-demographic and clinical data

A total of 142 participants met inclusion/exclusion
criteria with one complete year of driving data and
plasma collection within two years of their driving
data. Table 2 presents the socio-demographic data of
the participants in this study divided into two groups
according to their amyloid status as determined by
plasma A�42/A�40. Participants with positive plasma
A�42/A�40 status were older than those with negative
status (74.8 (5.4) versus 72.3 (4.4), p < 0.01). There
were no significant differences in sex, education, race,
and MMSE [29] scores between the two groups. As
expected, individuals who were plasma A�42/A�40
positive were more likely to be positive for the APOE
�4 allele. The participants made a total of 188,935
trips over the time period.

Selection and ranking of the driving variables

Since the presence of highly correlated features
can impede the feature ranking performance, highly
correlated features were removed from the list of
driving variables. These included median and stan-
dard deviation of acceleration. From the reduced set
of driving variables, the ranked importance score of
each variable for both outputs are presented in Fig. 2.
For predicting plasma A�42/A�40 status, the six most
important driving features were the number of trips
during rush hour, the median and standard devia-
tion of jerk, the number of hard braking incidents
and night trips, and the standard deviation of speed.
Only the six listed features were included in the ANN
model. The violin plots of the six most important driv-
ing measures across the 12 months are depicted in
Fig. 3.

Results of neural network analysis

By employing ANN, we predicted amyloid posi-
tivity status defined by plasma A�42/A�40 using a
combination of driving variables, age, and APOE
�4 status as input variables. Automatic architecture
training of the network delineated the best model
with two layers each consisting of 32 hidden neu-
rons. To prevent overfitting, we employed a 5-fold
cross-validation scheme and an early stopping crite-
rion during model training. Overall, the model with
driving variables alone achieved 0.68 precision, 0.84
recall, and 0.75 F1 scores for classifying amyloid
positive status based on A�42/A�40. Further, the
model with driving variables, age, and APOE �4 sta-
tus achieved 0.77 precision, 0.82 recall, and 0.77 F1
scores for classifying amyloid positive status based
on plasma A�42/A�40. Table 3 shows all the perfor-
mance metrics for the two models.

DISCUSSION

This study examined associations between daily
driving behavior and plasma A�42/A�40 biomarker
among cognitively normal older adults. The main
finding from studying over 144,000 driving trips
among 142 older adults over a year was that the model
with driving variables along with age and APOE
�4 status showed moderately high concordance with
plasma A�42/A�40 status, with an area under the
curve of 0.77.

The predictive ability of the models for identify-
ing plasma A�42/A�40 status significantly improved
with the addition of age and APOE �4 status. In fact,
the model with driving variables, age, and APOE
�4 status achieved F1 scores of 0.80 [0.051], while
the models with driving variables alone achieved F1
scores of 0.75 [0.023], for predicting A�42/A�40 sta-
tus. This improvement is expected since age and
carrying one or more APOE �4 alleles are among
the strongest risk factors for AD.

The two models achieved higher recall scores than
precision for predicting plasma A�42/A�40 status.
The higher recall scores indicate that the predictive
models performed better in correctly identifying the
true positives. That is, the models can accurately
identify individuals with positive amyloid status,
among all individuals with positive amyloid status.
The lower precision score, on the other hand, can be
indicative of a higher false positive rate, which are the
cases predicted as positive, but were amyloid negative
as defined by the biomarkers.
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Table 2
Socio-demographic and clinical data divided according to the amyloid positivity status based on (1) plasma A�42/A�40 and (2) the Amyloid

Probability Score (APS) status

Variable Plasma A�42/A�40 Status
Negative (n = 54) Positive (n = 88) F/χ2 df p

Age (y) 72.3 (4.4) 74.8 (5.4) 8.65 1 0.004
Education (y) 16.6 (2.0) 16.3 (2.4) 0.33 1 0.565
Sex (M/F) (counts) 28/26 38/50 0.69 1 0.405
Race (White/Black or African American)a (counts) 43/11 79/9 2.07 1 0.150
MMSE 29.2 (1.2) 29.3 (0.9) 0.77 1 0.383
APOE �4 status (carriers/ non-carriers) (counts) 9/45 47/41 11.85 1 0.001
aThe sample only includes Black and White participants. MMSE, Mini-Mental State Examination.

Fig. 2. Relief-based feature importance ranking for Plasma A�42/A�40.

Table 3
Assessment of the model performance. Values in parentheses represent the standard deviation across the 5 folds

Outcome Input Precision Recall ROC-AUC F1-score

Plasma A�42/A�40 Status Driving features 0.68 (0.021) 0.84 (0.046) 0.68 (0.061) 0.75 (0.023)
Driving features, age and
APOE �4 status

0.77 (0.025) 0.82 (0.081) 0.77 (0.043) 0.80 (0.051)

Prior studies have found driving behavior can
be indicative of preclinical AD determined by CSF
and PET biomarkers, among cognitively intact older
adults. More specifically, preclinical AD is asso-

ciated with more driving errors during an on-road
driving test [37], can predict the time at which an
individual will fail a driving test in the future [12,
13, 38], spatial navigation abilities [39], and time
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Fig. 3. Violin plots of the six most important driving measures across 12 months grouped by plasma A�42/A�40 status.

to driving cessation [17]. Recently, we reported that
machine learning models incorporating naturalistic
driving behavior and age can identify amyloid posi-
tivity status, as determined by CSF biomarkers, with
high accuracy [16]. To our knowledge, this is the first
study to investigate the associations between driving
behavior and plasma biomarkers of AD. The driving
model presented in this study achieved lower per-
formance for predicting plasma A�42/A�40 status,
compared to the previous driving machine learning
model for predicting CSF A�42/A�40 status. This
difference may result from current plasma biomark-
ers showing lower concordance with amyloid-PET
status, compared to CSF biomarkers. The use of
A�42/A�40 to define amyloids is a notable limita-
tion in this study. While recent evidence suggests
that plasma A�42/A�40 reflects amyloid-� deposi-
tion and correlates with brain amyloidosis [9, 40, 41],
the prognostic value of plasma biomarkers includ-

ing A�42/A�40 and whether they can predict future
AD pathological and clinical changes remains to be
confirmed with continued research for confirmation
[42]. Emerging work suggest that plasma biomarkers
like p-tau217 may also be associated with amyloi-
dosis but this time course with A�42/A�40 needs
to be delineated. Additionally, more research needs
to be conducted to understand how A�42/A�40 may
perform differently across ethnoracial groups in pre-
dicting AD pathology. Future studies are required
to compare driving behavior with CSF and blood
biomarkers to identify amyloid deposition in AD, as
defined by the “gold standard” PET-amyloid to estab-
lish concordance with driving behavior across the
biomarkers. Additionally, accumulation of A� alone
does not represent AD. In fact, evidence suggests that
the molecular phenotype of AD is highly complex,
and a variety of changes can differentiate AD from
healthy aging [43]. For example, hyperphosphory-
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lated tau, neurofibrillary tangles, and synaptic and
neuronal loss have been shown to be closely asso-
ciated with memory deficits in AD [44]. Therefore,
future studies will expand beyond A� to test the mod-
els for predicting other AD pathologies such as tau.

Finally, driving is critical for daily life for many
older adults, including those with dementia. Although
individuals with dementia have to eventually stop
driving, research shows that they may be able to drive
safely for a period of time [45–47]. Therefore, the
subtle differences in driving behaviors detected by
machine learning models among drivers with pre-
clinical AD should not be interpreted as if these
individuals are unsafe drivers. In fact, the direc-
tion of the patterns (e.g., lower jerk or fewer night
trips among individuals with preclinical AD) sug-
gests that older drivers with preclinical AD are more
cautious drivers and are more likely to self-regulate
their driving behaviors. It is important to assess each
individual’s ability to drive based on their specific
symptoms and ability to operate a vehicle safely. This
allows individuals with dementia to maintain their
independence and mobility for as long as possible.

Conclusions

The findings of this cohort study demonstrate the
high diagnostic power of artificial neural network
models incorporating daily driving, age, and APOE
�4 status for identifying plasma A�42/A�40 status,
which can be considered as a distant proxy for brain
amyloid pathology, among cognitively intact older
adults. The increasing evidence showing plasma
A�42/A�40 ratio has utility in detecting brain amy-
loidosis is opening new avenues for neurologists
and other clinicians to have access to a low-burden,
affordable, rapid, and reliable AD biomarker. At
the same time, increasing evidence suggests that
subtle everyday driving behaviors, when captured
continuously using mobile technology, may serve as
non-invasive behavioral marker to track changes in
AD. When used together, blood-based biomarkers
and driving-based digital markers can improve the
available diagnostic toolkit of preclinical AD and
offer an ideal first step in the multi-stage diagnos-
tic process of AD. More specifically, they offer more
scalable, convenient, and cost-effective solutions to
meet the requirements for implementation in pri-
mary care settings. Digital driving-based markers can
provide the means to monitor AD progression contin-
uously and passively and together with blood-based
biomarkers, can help determine which individuals

should be referred for further assessment, such as
diagnostic CSF analysis and amyloid PET diagnos-
tic. The most significant advantage of blood-based
biomarkers and digital markers of driving is their
accessibility and affordability, making it possible for
rural and marginalized communities, who have his-
torically encountered limited access to healthcare
systems due to geographic distance and a lack of
specialty clinics or hospitals, to receive adequate
healthcare.
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