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Abstract

Introduction: We investigated the relationship between preclinical Alzheimer’s dis-

ease (AD) biomarkers and adverse driving behaviors in a longitudinal analysis of

naturalistic driving data.

Methods: Naturalistic driving data collected using in-vehicle dataloggers from 137

community-dwelling older adults (65+) were used to model driving behavior over

time. Cerebrospinal fluid (CSF) biomarkers were used to identify individuals with pre-

clinical AD. Additionally, hippocampal volume and cognitive biomarkers for AD were

investigated in exploratory analyses.

Results: CSF biomarkers predicted the longitudinal trajectory of the incidence of

adverse driving behavior. Abnormal amyloid beta (Aβ42/Aβ40) ratio was associated

with an increase in adverse driving behaviors over time compared to ratios in the

normal/lower range.

Discussion: Preclinical AD is associated with increased adverse driving behavior over

time that cannot be explained by cognitive changes. Driving behavior as a functional,

neurobehavioral marker may serve as an early detection for decline in preclinical AD.

Screeningmay also help prolong safe driving as older drivers age.
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using PubMed and Scopus, searching for relevant

research published in peer-reviewed journals, meeting

abstracts, and presentations. Research into driving and

preclinicalAlzheimer’s disease (AD)usingbiomarkerswas

very limited, and an in-depth literature review helps put

this new area of research in context.

2. Interpretation: Our findings build upon previous

research into driving and preclinical AD, and add to

the wider AD and driving literatures. We found that it is

possible to detect changes in driving behavior associated

with an increased risk of motor vehicle crashes in other-

wise cognitively normal older adults who show signs of

ADbrain pathophysiology but do not have prodromal AD.

3. Future directions: The findings reported in the arti-

cle represent an early step in detecting and assessing

changes in high-risk driving behavior in those with pre-

clinical AD. Awareness of this increased risk despite

absence of cognitive symptoms of AD is important when

considering early detection and interventions to prolong

safe driving among aging drivers.

1 INTRODUCTION

Alzheimer’s disease (AD) is a risk factor formotor vehicle crashes, with

up to five times higher crash risk in individuals with cognitive impair-

ment compared to healthy controls.1,2 Older age is also associatedwith

increased risk of motor vehicle crashes.3 The Centers for Disease Con-

trol and Prevention (CDC) reported 7480 deaths in the United States

in 2020 due to crashes for those aged 65+ (the second leading cause

of death by injury in that age range).4 The CDC also reported 149,811

nonfatal injuries caused by motor vehicle accidents for the same age

group, and such injuries have been linked with severe health outcomes

in older adults compared to younger age groups.5,6 Conversely, driving

cessation is associatedwith depression,7 increasedmortality,8 and loss

of independence.9 It is essential to understand how driving behavior is

affected by age and AD to prolong driving ability while considering the

safety of older drivers and others who share the road.

While the relationship between AD and motor vehicle crashes is

established, crash risk in preclinical AD is an emerging area of research.

Anestimated30% to40%10 of cognitively normal older adults are clas-

sified as having preclinical ADbased on biomarkers that can sensitively

detect AD brain pathology. Individuals with preclinical AD biomarkers

have an annual conversion rate of 20% to 30%11–13 to prodromal AD.

Despite having apparently normal function, individuals with preclini-

cal AD have a higher likelihood of failing a road test14,15 and are at an

increased risk of traffic violations and crashes.16 However, studies on

exactly how driving behavior changes over time are limited, and find-

ings are predominantly based on data collected in a laboratory setting

as opposed to observing naturalistic driving.

Certain driving behaviors like hard braking, hard acceleration, and

speeding have been associated with increased risk of motor vehi-

cle crashes.17 Previous research has focused on mean differences

in naturalistic driving metrics, and found that those with preclinical

AD biomarkers take fewer trips, speed more often, but show fewer

instances of hard braking and acceleration, which seems counterintu-

itive given the known risks associated with the disease.18 Older adults

may change their driving habits as they age,19 but, whether these

changes are due to conscious self-regulation is unclear.20 Instead of

cross-sectional group comparisons based on driving metrics, examin-

ing whether these driving behaviors change within an individual over

timemay provide appropriate insights.21

A better understanding of how preclinical AD affects the incidence

of high-risk, or “adverse,” driving behavior over time may inform clini-

cians on how early intervention can prolong safe driving in old age and

maintain independence in both those who are at risk of developing AD

and those wishing to age-in-place. A recent study into the effects of

preclinical ADonadverse driving behaviors found anunexpected inter-

action between age and biomarker status.22 Driverswith older age and

preclinical AD biomarkers exhibited increased incidences of adverse

driving compared to lower age ranges, whereas the opposite was true

for biomarker-negative individuals for whom age was associated with

decreased driving risk. In the current study, we expand upon these

findings and analyzed adverse driving behaviors (hard braking, hard

acceleration, and speeding) longitudinally in a sample of community-

dwelling older adults. The aim is to replicate the pattern of data in the

aforementioned cross-sectional analysis,22 and investigate how inci-

dences of adverse driving behavior change over time and how this is

affected by preclinical AD. We hypothesized that drivers with preclin-

ical AD, who can be identified by CSF biomarkers, will demonstrate an

increase in adverse driving behaviors over time, and that drivers with-

out preclinical AD biomarkers will demonstrate a decrease in these

behaviors over time.

2 METHODS

2.1 Participants

The study sample consisted of 137 community-dwelling older adults

aged > 65 years old who were enrolled in longitudinal studies of AD

and driving behavior at the Washington University in St. Louis, Knight

Alzheimer Disease Research Center (ADRC). Participants undergo

annual clinical and cognitive assessments. Inclusion criteria were: (1)

cognitively normal at baseline based on a Clinical Dementia Rating

(CDR) 23 of “0,” (2) drive at least once per week and have naturalistic

driving data collected over at least 365 days, and (3) have completed

lumbar puncture for the collection of cerebrospinal fluid (CSF) within

18months of driving data. The study was approved by theWashington

University Institutional Review Board, and each participant signed an

informed consent.
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DOHERTY ET AL. 3

2.2 Cognition

Cognitionwas assessed using a composite score to assesswhether par-

ticipants differ by biomarker status. Although cognitive changes are

not expected due to the inclusion criteria of CDR = “0”, it is important

to confirm whether the two groups differed in cognition. The compos-

ite score24 was based on subtests measuring processing speed (Trail

Making Test Part A),25 executive function (Trail Making Test Part B),25

episodic memory (Free and Cued Selective Reminding Test: Free recall

score),26 and semantic category naming (Animal Fluency).27 The com-

posite score was calculated by standardizing scores using the mean

and standard deviation of each of the subtests and then calculating the

mean of these standardized scores for each participant.

2.3 Driving

Naturalistic driving data were captured using a GPS data logger (“G2

Tracking Device,” Azuga Inc.). This device plugs into the onboard

diagnostics-II (OBDII) port included in modern vehicles, requires 20

seconds to install, uses the vehicle’s battery for power, and is mini-

mally invasive. The variables collectedduring each vehicle’s trip include

date, time, latitude and longitude, and speed. In addition to whenever

a notable driving event occurs, data are recorded at 30 second inter-

vals. The Driving Real-World In-Vehicle Evaluation System (DRIVES)

methodologyhas beendescribed in detail in previous publications.28-31

To investigate adverse driving behaviors over time, a composite was

created to include hard braking, sudden acceleration, and speeding.

Hard braking and sudden acceleration were defined as decelera-

tion/acceleration in excess of 8 miles per hour per second. Speeding

was defined as speed ≥ 6 miles per hour over the posted speed

limit. Posted speed limits are continuously obtained from each lati-

tude and longitude of where the vehicle is driven and the difference

in the vehicle speed versus the speed limit is automatically calculated

by the vendor who supplies the dataloggers. These three measures

were selected, as previous research has found differences in base-

line measures of these behaviors between AD biomarker negative and

biomarker positive groups,18 and age-related differences in the inci-

dence of these behaviors between negative and positive groups.22 The

variablewas summarizedandcodedat a trip level,with “1” if therewere

any incidences of adverse driving behaviors, and “0” otherwise.

2.4 CSF biomarkers

CSF was collected as previously described.32 Levels of amyloid beta42

(Aβ42) and amyloid beta40 (Aβ40) were measured using automated

electrochemiluminescence immunoassay (Lumipulse G1200, Fujire-

bio). The ratio Aβ42/Aβ40 was used to classify preclinical AD: lower

ratio values indicate greater pathology, and higher ratio values indicate

lower pathology/absence of preclinical AD in an individual. Unless

specified, analyses treated CSF Aβ42/Aβ40 as continuous. For the

analysis of hippocampal volume (due to issues with model conver-

gence) and data summation in figures, participants were classified

as being biomarker positive versus negative based on an established

cut-off from an analysis of a large sample of ADRC participants to

determine the highest concordance between CSF biomarkers and

amyloid positron emission tomography (PET).33 Participants with

a Aβ42/Aβ40 ratio below the cut-off of 0.0673 were classified as

biomarker positive, and those at or above the cut-off were classified as

biomarker. Similar models were analyzed substituting Aβ42/Aβ40 with
total tau (t-tau)/Aβ42 and phosphorylated tau (p-tau)/Aβ42, and are

included in the supporting information. The cut-off for preclinical AD

biomarker positivity for t-tau/Aβ42, was > 0.488 and for p-tau/Aβ42
was> 0.0649.

2.5 Magnetic resonance imaging

Structural biomarkers via magnetic resonance imaging (MRI) imag-

ing were captured using Siemens BioGraph mMR PET-MR 3T and

Siemens Trio 3 T MRI scanners. MRI data were processed using the

FreeSurfer 5.3 image analysis suite running on CentOS 5.5 Linux on

Dell PowerEdge 1950 servers equipped with Intel Xeon processors.

The technical details of the FreeSurfer analysis have been described

previously.34,35 Prior to analysis, hippocampal volume was normalized

to account for differences in head size. The procedure consisted of

computing themean intracranial volume (ICV) for the sample, and then

conducting a regression analysis with ICV as the sole independent

variable and participants’ hippocampal volume (the sum of right and

left hippocampal volume) as the dependent variable. The β-weight
was then used to compute participants’ normalized hippocampal

volume using the following equation: normalized hippocampal vol-

ume = raw hippocampal volume – (β-weight × [participant’s ICV –

sample mean ICV])36. MRI data were available for a subset of 106

participants.

2.6 Statistical analysis

Analyses are separated into two sections: (1) the primary analy-

sis of longitudinal change in participants’ driving behavior and (2)

exploratory analyses investigating potential explanations for the dif-

ferences between AD biomarker positive and biomarker negative

groups in adverse driving behavior.

Due to rolling enrollment in this longitudinal cohort, duration of

naturalistic driving data collection varied across participants. Data for

driving variables consisted of every trip taken by the participants for

the dates inwhich theywere enrolled in the study thatwere alsowithin

18 months of a CSF biomarker collection. Exploratory MRI analyses

were conducted on a smaller subset of participants (n = 106) due to

missing data. All analyses controlled for age, sex, and education. Mod-

els also contained a random intercept for each participant to adjust for

baseline variance in driving habits.

The primary analyses featured the same outcome variable, which

was whether a trip had an incidence of adverse driving (“1”) or not
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4 DOHERTY ET AL.

(“0”). The data were analyzed using binomial logistic regressions

(binomial generalized linear mixed models [GLMMs]), which allow

analysis of binary outcome data. GLMMs are a suitable analysis for

these data because adverse driving events are rare and their inci-

dences are highly variable between participants, such that Poisson

regression is not appropriate due to zero inflation and overdispersion.

The analysis investigated the change in driving behavior over time,

that is, the number of days since naturalistic driving data capture

started for each participant. Age at baseline was included as a fixed

effect based on previous age-related findings22 to control for those

effects.

In analyses that included biomarkers, the closest biomarker data

for each participant was selected and associated with each trip for

analysis. CSF biomarker ratio was treated as a continuous variable

in the primary driving analysis. For the analysis of hippocampal

volume, biomarkers were dichotomized to positive (“1”) and nega-

tive (“0”) values based on the aforementioned cut-off due to issues

with model convergence and also to aid interpretation of those

models.

Age and education variables were centered by subtracting the

sample means from each value to aid model convergence and inter-

pretation of coefficient estimates. Time (number of days since data

collection started) was scaled by subtracting the mean of the sam-

ple from each value and dividing by the standard deviation. This

step was essential for model convergence because participants’

time in the study varied. The composite cognition score and hip-

pocampal volumes were also scaled prior to analysis to aid model

convergence.

Analyses were conducted in R37 using the lme438 (version 1.1-29)

package, and plots were created using ggeffects39 (version 1.1.3) and

ggplot240 (version 3.3.6).

3 RESULTS

3.1 Participant characteristics

Table 1 summarizes participant characteristics. While the majority of

analyses treated the CSF biomarker as a continuous variable, the sam-

ple has been grouped in biomarker positive and negative groups based

on Aβ42/Aβ40 to summarize group differences. AD biomarker groups

as defined by Aβ42/Aβ40 status (positive < 0.0673, negative ≥0.0673)

did not vary in sex, race, or years of education. The biomarker positive

group had a higher mean age at baseline (P < 0.01) and a larger pro-

portion of apolipoprotein E ε4+ carriers (P < 0.001) compared to the

biomarker negative group, which is expected given its association with

AD risk. The biomarker groups did not differ in terms of the mean per-

centage of trips with speeding, hard braking, or hard acceleration, and

also did not differ on the composite score of these behaviors. For cog-

nition, the biomarker positive group performed worse on the Free and

Cued Selective Reminding Test (P < 0.01) and had a lower composite

score (P< 0.05).

3.2 Analysis of driving variables

The primary analysis of longitudinal adverse driving is summarized in

Table 2. The mean time in the study was 769.90 days (range = 372–

1520). The regression analysis revealed a statistically significant effect

of time on adverse driving, with an increase in the risk of adverse

driving over time. There was also an interaction between time and

Aβ42/Aβ40, indicating a different trajectory of adverse driving over

time dependent on biomarker ratio. Figure 1 depictsmodel predictions

of the probability of an adverse driving event during a trip, showing

that older adults with normal biomarker ratios exhibit a decrease in

adverse driving over time, while those at the other end of the ratio

range demonstrate an increase in adverse behaviors. The analysis was

repeated for t-tau/Aβ42 ratio and p-tau/Aβ42 ratios and the results

were consistent with Aβ42/Aβ40 ratio (see supporting information).

Notably, the negative intercept terms in these models indicate that

trips aremore likely to not feature an adverse driving event. In addition

to investigating adverse driving, we ran additional analyses on more

global driving behaviors (namely average distance travelled and speed,

which could both indicate higher levels of highway driving) to check

that other changes in driving behavior could not potentially explain

incidence of adverse driving events. These analyses are summarized in

the supporting information and did not provide evidence for alterna-

tive explanations for differences in adverse driving across the range of

CSF biomarker values.

3.3 Exploratory analyses

We conducted two exploratory analyses to examine the relationship

between AD biomarkers and driving behavior. The first evaluated

whether baseline cognition (as measured by the composite score sum-

marized in Table 1) could explain the adverse driving effects in the

primary analysis, while the second investigated whether hippocampal

volume predicted changes in driving behavior.

The results for the analyses of baseline cognition are summarized

in Table 3. The model contains the same interaction between time and

biomarker ratio as observed in the previous analysis, but, crucially, the

model does not contain a statistically significant three-way interaction

amongAβ42/Aβ40, cognition, and time, suggesting that increase in driv-

ing risk over time could not be explained solely by baseline cognition.

The assessment of cognition provided by the composite score does

not appear to measure the same differences between the biomarker

groups that leads to changes in driving behavior.

Table 4 summarizes analyses of participants’ hippocampal volume

at the closest date to the first driving date (mean interval = 282.77

days, range = 13–543). The model features a three-way interac-

tion between time, biomarker status, and hippocampal volume. This

interaction can be seen in Figure 2, which shows that hippocampal

volume only appears to affect those in the biomarker positive group.

In the left panel, it is clear that those biomarker positive participants

with hippocampal volume one standard deviation below the sample
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DOHERTY ET AL. 5

TABLE 1 Participant characteristics at baseline

Total (n= 137) Aβ42/Aβ40− (n= 83) Aβ42/Aβ40+ (n= 54)a Testa

Age, years 73.80 ± 4.76 72.84 ± 4.51 75.28 ± 4.79 P< 0.01**

Sex,N= female, % 62 (45.26) 41 (49.40) 21 (38.89) P= 0.292

Education, years 16.50 ± 2.27 16.25 ± 2.27 16.87 ± 2.25 P= 0.120

Raceb,N=White, % 120 (87.59) 69 (83.13) 51 (94.44) P= 0.064

APOE ε4+ carrier,N, % 47 (34.31) 13 (15.66) 34 (62.96) P< 0.001***

Biomarkers

CSF: Aβ42/Aβ40 0.074 ± 0.023 0.091 ± 0.008 0.048 ± 0.010 P< 0.001***

CSF: t-tau 353.76 ± 179.72 295.30 ± 157.17 443.62 ± 176.31 P< 0.001***

CSF: p-tau 46.91 ± 22.82 36.28 ± 14.80 63.25 ± 23.42 P< 0.001***

MRIc: Hippocampal volume (normalized), cm3 7.48 ± 0.95 7.47 ± 0.94 7.50 ± 0.96 P= 0.874

Driving

Trips with speeding, % 9.02 ± 9.29 9.18 ± 8.69 8.80 ± 10.21 P= 0.821

Trips with hard braking, % 9.11 ± 7.28 9.79 ± 7.85 8.06 ± 6.22 P= 0.153

Trips with hard acceleration, % 4.11 ± 6.67 4.03 ± 6.82 4.24 ± 6.49 P= 0.863

Trips with any adverse driving events, % 18.53 ± 12.76 19.16 ± 12.43 17.57 ± 13.31 P= 0.485

Trips,N 2866.86 ± 1615.77 3033.22 ± 1656.63 2611.17 ± 1530.75 P= 0.130

Cognitive assessment

Free &Cued Selective Reminding Task, Free

recall score

30.28 ± 6.76 31.80 ± 6.21 27.94 ± 6.96 P< 0.01**

Animal Fluency, total animals named 21.09 ± 4.86 21.34 ± 4.97 20.72 ± 4.71 P= 0.466

Trail Making Test, Part A, seconds to complete 30.98 ± 9.72 29.96 ± 8.84 32.54 ± 10.83 P= 0.148

Trail Making Test, Part B, seconds to complete 75.93 ± 29.18 75.80 ± 30.11 76.15 ± 27.96 P= 0.944

Composite score −0.15 ± 0.72 −0.05 ± 0.73 −0.31 ± 0.70 P< 0.05*

Note: Factors included in analyses are shown in bold.
Abbreviations: Aβ, amyloid beta; APOE, apolipoprotein E; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; p-tau, phosphorylated tau; t-tau, total

tau.
aMeans were compared using t-tests. Frequencies were compared using Fisher’s exact test.
bThe sample contains only Black andWhite races.
cData only available for 106 participants. Biomarker negative= 65 (61.32%), biomarker positive= 41 (38.68%).

*P< 0.05; **P< 0.01; ***P< 0.001.

TABLE 2 Regressionmodel investigating change in adverse
driving over time

Dependent variable

Adverse driving

(Intercept) −2.118 (0.120)***

Time (days) 0.116 (0.016)***

Aβ42/Aβ40 5.184 (0.666)***

Baseline age −0.011 (0.017)

Sex (female vs. male) 0.012 (0.037)

Education (years) −0.023 (0.037)

Time: Aβ42/Aβ40 −2.402 (0.202)***

Observations 392,760

Log likelihood −169,455.500

AIC 338,927.000

*P< 0.05; **P< 0.01; ***P< 0.001.

Abbreviations: Aβ, amyloid beta; AIC, Akaike information criterion.

median demonstrate a decrease in adverse driving over time, whereas

participants in all other groups do not.

4 DISCUSSION

This study aimed to expand previous research into preclinical AD

and driving, and investigate whether previously observed interactions

between age and biomarker status22 could be replicated in a longitu-

dinal analysis of driving behavior. The relationship between preclinical

AD and driving has been investigated in prior studies, but these inves-

tigations have focused on road tests,14,15 or inclusion of a wide array

of driving metrics to differentiate between biomarker positive and

biomarker negative individuals.18,41 These prior studies focused on

using driving to differentiate between those with and without pre-

clinical AD, rather than specifically which driving behaviors change

over time, and how. This study adds to prior research by investigat-

ing longitudinal changes in driving behavior and how adverse driving
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risk is moderated by preclinical AD. We found that the trajectory of

adverse driving behaviors over time could be predicted by preclinical

AD biomarkers.

Our findings suggest that CSF biomarkers of AD predicted different

patterns of change in driving behavior. Older drivers with biomarkers

indicating AD brain pathology demonstrated an increase in adverse

driving over time, while those with normal levels of AD biomarkers

displayed a decrease in these behaviors. This finding complements

the age-related findings reported in previous research,22 expands and

explains findings related to baseline differences in adverse driving

behaviors,18 and sheds some light on which behavioral changes may

inform machine learning analyses to differentiate between biomarker

groups based on a multitude of naturalistic driving variables.42 Impor-

tantly, additional analyses of driving variables and cognition confirmed

that these differences cannot be fully explained by other more global

changes in driving behavior because none of these additional analyses

revealed the same pattern of longitudinal interaction effects.

Despite inclusion criteria at baseline requiring a CDR of “0,” we

found that biomarker positive participants performed worse on cog-

nitive testing compared to biomarker negative participants. However,

this difference cannot explain the pattern of performance detected in

the primary analysis. The pattern of main and interaction effects in the

analysis of cognition indicates higher composite scores being associ-

ated with higher overall incidences of adverse driving in addition to

higher incidences of these behaviors over time, counter to the main

findings related to biomarkers and adverse driving. Coupled with the

fact that the cognition models did not include statistically significant

three-way interactions among time, biomarker status, and cognition,

it is clear that cognition measures at baseline cannot fully explain

changes in adverse driving behaviors.

These results are also supported by a recent study of the same

cohort (n=161) that examinedwhether baseline cognitive abilities like

episodic memory, attentional control, processing speed, and working

memorypredicted change in driving space andbehavior over 2 years.43

Compared to older drivers with high attentional control (the ability to

focus on relevant aspects of the environmentwhile ignoring distracting

or competing information), those with lower attentional control drove

fewer trips per month and less at night, visited fewer unique locations,

and drove in smaller spaces. Attentional control only explained ≈1%

of the variance in change over time in the driving space score. None
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TABLE 3 Regressionmodels investigating baseline cognition and
adverse driving

Dependent variable

Adverse driving

(Intercept) −2.009 (0.117)***

Time (days) 0.133 (0.016)***

Aβ42/Aβ40 3.880 (0.663)***

Cognition (composite score) −0.050 (0.091)

Baseline age −0.008 (0.017)

Sex (female vs. male) −0.045 (0.165)

Education (years) −0.035 (0.036)

Time: Aβ42/Aβ40 −2.740 (0.204)***

Time: Cognition 0.021 (0.015)

Aβ42/Aβ40: Cognition 3.051 (0.514)***

Time: Aβ42/Aβ40: Cognition 0.098 (0.194)

Observation 392,760

Log Likelihood −169,435

AIC 338,895

*P< 0.05; **P< 0.01; ***P< 0.001.

Abbreviations: Aβ, amyloid beta; AIC, Akaike information criterion.

TABLE 4 Regressionmodels investigating baseline hippocampal
volume and adverse driving

Dependent variable

Adverse driving

(Intercept) −1.733 (0.135)***

Time (days) −0.135 (0.007)***

Aβ42/Aβ40 + −0.136 (0.128)

HV 0.005 (0.123)

Baseline age −0.017 (0.024)

Sex (female vs. male) 0.010 (0.184)

Education (years) −0.063 (0.043)

Time: Aβ42/Aβ40+ 0.144 (0.013)***

Time: HV −0.003 (0.007)

Aβ42/Aβ40 +: HV −0.191 (0.181)

Time: Aβ42/Aβ40 +: HV 0.112 (0.017)***

Observations 300,313

Log likelihood −127.324.000

AIC 252,672.000

*P< 0.05; **P< 0.01; ***P< 0.001.

Abbreviations: Aβ, amyloid beta; AIC, Akaike information criterion; HV,

hippocampal volume.

of the cognitive abilities predicted change in performance metrics like

hard braking, speeding, or sudden acceleration.43 Driving behavior is

a dynamic activity requiring rapid, sustained, and coordinated deploy-

ment of several conscious and subconscious systems (cognitive, motor,

sensory, affective). As a result, cognitive abilities tested using a con-

trolled condition via a single domain task are not scalable to an activity

like driving in which the constraints and demands widely vary. Assess-

ment of neuropsychological correlates with driving requires dynamic,

multi-modal tasks.

The exploratory analysis of baseline hippocampal volume revealed

a three-way interaction among volume, time, and biomarker status.

This interaction reveals that those individuals in the biomarker pos-

itive group with lower baseline hippocampal volume demonstrated a

decreased risk of adverse driving behavior over time, while those with

volumes closer to the mean and above demonstrated an increase in

adverse driving over time. Conversely, the biomarker negative group

all demonstrate a decrease in adverse driving behavior over time

regardless of hippocampal volume. It may be that decreased volume

at baseline is associated with memory difficulties that the participant

may be aware of, and so they consciously alter their driving behavior

to avoid situationswith increased risk. Thosewith less or no hippocam-

pal volume atrophymay not be aware of changes in their cognition, and

so are more prone to increases in aggressive driving that rely on other

brain structures. The compounded effects of preclinical AD and hip-

pocampal atrophy likely increase howmuch older drivers self-regulate

their driving as a compensatory response to pathology and diminished

structural capacity. Further investigation is needed to explore these

effects, and the potential links among progression from preclinical to

symptomatic AD, hippocampal volume, and driving.

4.1 Limitations

This study is comprised of a fairly homogenous sample, consisting of

highly educated and predominantly White individuals living in and

around the St. Louis, Missouri area. Caution must be taken when

generalizing these findings to other populations in terms of race, edu-

cation, and geographical residence. Recruiting primarily from an urban

environment prohibits an in-depth investigation of how the built envi-

ronment, availability of othermeansof transportationbesidespersonal

vehicles, and the walkability of neighborhoods influences an older

adult’s self-regulation in relation to driving. There are ongoing efforts

to expand the DRIVES methodology both nationally and internation-

ally to recruit a wider sample to investigate how the links between

preclinicalADanddrivingbehaviormaybemoderatedbyother factors.

Due to rolling enrollment, participation time varied in the study. To

maximize the sample size (which was essential due to the aforemen-

tioned rarity of adverse driving events) it was necessary to scale the

time variable to model the data. A limitation of this approach is that

it is not possible to draw conclusions on the exact time frame of the

increases anddecreases in adverse driving over timebasedon the coef-

ficient estimate.We focused on differences in the trajectory of adverse

driving behavior over time as a class. Continued data collection will

allow futuremodeling in the rateof change in adversedrivingbehaviors

and the specific type. Additionally, due to the relative rarity of adverse

driving events, at this stage we are unable to separately investigate

changes in the behaviors that make up the adverse behavior compos-

ite. Future studies aim to provide a more in-depth analysis of whether
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F IGURE 2 Driving aggression plotted by time, hippocampal volume, and biomarker status. The left panel includes predictions for participants
with amyloid beta (Aβ)42/Aβ40 ratios indicating preclinical Alzheimer’s disease, while the left panel refers to negative participants. Hippocampal
groups represent mean and+/– 1 standard deviation volumes. Note: Although hippocampal volume is plotted in groups, it was treated as
continuous in the analysis

incidences of hardbraking, hard acceleration, and speeding individually

change over time.

Another difficulty in investigating links between preclinical AD

biomarkers and behaviors such as naturalistic driving is that the use of

cut-offs for biomarker positivity are continually refined and updated.

We elected to treat CSF biomarkers as continuous variables where

the complexity of the statistical model is not so great that continu-

ous variables complicate interpretation, and that the sample size is

large enough to model such data. However, dichotomizing biomarker

variables into positive and negative groups can allow convergence

of models when the statistical power is not great enough to permit

analysis of continuous variables, and to aid interpretation of complex

interactions. A limitation of this approach is that conclusions based on

biomarker positivity could change in the future as cut-offs continue to

be researched and their confidence intervals shrink.

The focus of our research to date has been on those older adults

who are without any overt cognitive symptoms of AD. Future research

would benefit from an examination of a sample representing the full

spectrum of AD ranging from cognitively normal biomarker negative

and positive, and very mild and mild degrees of symptomatic AD for

those who still drive. Additionally, we have observed in both prior

research and the experiment reported here that those in the healthy

CSF biomarker ranges demonstrate a decrease in adverse driving over

time, but that baseline adverse driving rates were higher in this group.

Future research aims to identify this pattern of behavior in individu-

als without preclinical AD biomarkers to understand why those with

preclinical AD demonstrate the opposite pattern.

5 CONCLUSION

This study shows that CSF biomarkers reflective of an increased risk

of developing AD predict different longitudinal trajectories of adverse

driving behavior. Specifically, those with more abnormal Aβ42/Aβ40
ratios that indicate preclinical AD exhibit an increase in driving risk

over time, while the opposite pattern is true for those with biomarker

ratios in the healthy range. These changes were not explained by other

more global differences in driving behavior, nor by differences in cog-

nition, and may be linked specifically with progression from preclinical

to symptomatic AD based on links between driving and biomarker

status. Further research is needed to fully explore when and why

these changes in adverse driving behavior first present, and whether
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DOHERTY ET AL. 9

they become markedly more common as individuals progress toward

symptomatic AD. A more thorough understanding of the underlying

mechanisms may help early screening efforts and inform clinicians

evaluating patients at risk of AD to prolong driving while maintaining

independence and autonomy.
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