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A B S T R A C T   

Infectious disease diffusion is inherently a complex spatiotemporal phenomenon. Simplifying this complexity to 
discover the associated structure of the city is of great importance. However, existing approaches mainly focus on 
distance property in geographic space to examine randomness, dispersion, or clustered structure of the disease 
distribution. While, the outbreak continuously changes its properties, shapes, or locations. Regardless of this 
adjacency-based structure, there may be associated spatial units that exhibit similar behaviors towards the 
outbreak fluctuations in a city. To reveal these characteristics, this research proposes a novel event-based 
spatiotemporal model, mining associated areas in space and time simultaneously. This model was applied to 
the cases rate of COVID-19 at the ZIP Code level in New York City. The results showed that the proposed 
approach could sufficiently address the spatiotemporal association relationships. To better understand the 
discovered associations, a map visualization approach is introduced, allowing recognition of these association 
relations at a glance. This approach develops a deep understanding of the spatiotemporal structure of the 
outbreak and better manifests the association and cause-and-effect relations between ZIP Code areas. The results 
provide good assets for the construction of healthy resilient cities with the function of preventing epidemic crises 
in the future.   

1. Introduction 

The world has already faced serious pandemics and epidemics such 
as plague, cholera, flu, severe acute respiratory syndrome coronavirus 
(SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS- 
CoV) (Piret & Boivin, 2021). In the last three years, the world has wit-
nessed coronavirus pandemic, also known as COVID-19 pandemic, that 
is caused by the SARS-CoV-2 virus. The first official case of human 
coronavirus disease 2019 (COVID-19) was reported on December 31, 
2019 in Wuhan, China, and subsequently it was reported around the 
world. After a while, the World Health Organization (WHO) declared the 
outbreak a pandemic on March 11, 2020. In New York City (NYC), the 
first official case of COVID-19 was reported on March 3, 2020 (Lara-R-
eyna et al., 2020). Ever since, NYC has witnessed about two million 
confirmed cases of COVID-19 and more than thirty thousand deaths due 
to this virus (NYC-Health, 2022). The most cities have also experienced a 
similar trend, and the disease quickly spread throughout them. To limit 
the person-to-person transmission of the virus, governments have 

proposed guidelines for social distancing policies and preventative 
practices. In this regard, identifying areas that have had similar fluctu-
ations in disease prevalence is very effective in developing policies to 
prevent and control infections. 

The spread of the SARS-CoV-2, like other infectious diseases, can be 
considered as a spatiotemporal concept; that is, its distribution and 
diffusion happen in space and time and can be influenced by the sur-
rounding environment. The geographical environments are complex in 
nature, and this complexity can be further intensified when temporal 
dimensions are considered. In fact, this complexity mainly lies in the 
relationships, autocorrelation, and heterogeneities of spatiotemporal 
data types, making it more difficult to identify patterns in spatiotem-
poral datasets compared to traditional numerical and categorical data-
sets (Wan & Zhou, 2008; Akbari et al., 2015). Therefore, what occur in 
this environment, such as the transmission of infectious diseases, will 
naturally inherit such complexities, which reflect the nature structure 
and dynamics of underlying processes. Furthermore, not only the 
prevalence of contagious disease is very high in some urban settings, but 
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also its spatial distribution is heterogeneous within a city. This signifi-
cant geographical variation in the disease intensity and extent of 
transmission occurs due to the various ways it affects the vulnerable 
groups and the environmental risk factors that facilitate the spatial 
spread of the pathogen (Cordes & Castro, 2020; Cuadros et al., 2020). In 
this context, understanding the nature of these spatiotemporal patterns 
is vital for identifying people who are most at risk, allocating resources, 
and determining effective intervention measures. To achieve this 
comprehension, getting insight into the spatial structure of the diffusion, 
its temporal development, and the interaction of space and time towards 
the evolution of disease are fundamental tasks (Jaya & Folmer, 2020). 
Significant efforts have been made to understand the relationships be-
tween COVID-19 and demographic characteristics and environmental 
factors such as air pollution (Srivastava, 2021; Travaglio et al., 2021), 
humidity (Haque & Rahman, 2020; Ma et al., 2020; Wang et al., 2021a), 
temperature (Menebo, 2020; Prata et al., 2020; Notari, 2021), and wind 
(Feng et al., 2020; Rendana, 2020). Moreover, several studies have 
explored the spatial or spatiotemporal structure of COVID-19 at different 
resolutions and in various regions. These studies have applied methods 
such as Spatial and Space-Time Scan Statistics (SaTScan) (Alkhamis 
et al., 2020; Wang et al., 2021b) and Moran’s I indices (Liu et al., 2021; 
Zheng et al., 2021) to COVID-19 datasets. For instance, a study in NYC 
investigated spatial inequality in COVID-19 positivity rates across ZIP 
Codes using Bayesian spatial negative binomial models (Yang et al., 
2021), and identified multiple sociodemographic factors contributing to 
disparities in positivity rates. Cordes & Castro (2020) analyzed clusters 
of testing rates, positivity rates, and proportion positive across NYC ZIP 
Codes. They also specified associations between clusters, and contextual 
factors. Furthermore, another study identified emerging hotspots of 
COVID-19 test percent positivity using space-time scan statistic across 
NYC (Greene et al., 2021). However, these studies have two main 
shortcomings. 

First, their approaches mainly focus on the clustered structure of the 
region, which is based on adjacency relations and distance between 
features. Whereas, there are many underlying factors that contribute to 
the outbreak and result in a random or dispersed spatial structure. 
Human mobility is one of these factors which plays a partial role in the 
diffusion of COVID-19 or any other infectious disease. Due to the 
development of transportation networks and globalization, the infec-
tious diseases spread rapidly and make it difficult to control the diffusion 
(Zhang et al., 2022). It may cause the pathogen to be diffused to areas 
that are not in the adjacency of the origin place. Socioeconomic status, 
worker characteristics (Baker et al., 2020), demographic characteristics, 
environmental characteristics, and urban structures are other examples 
of these factors. These factors can lead to the emergence of association 
relations and similar behavior towards the disease in specific areas that 
are not necessarily adjacent to each other. Namely, there might be some 
undetected homogeneity in the heterogeneous space caused by the dy-
namics of the disease. Second, these spatiotemporal analyses often 
divide the time interval into several time frames and investigate the 
clusters and spatial structure across the study area in each time frame 
separately. Integrating time in the model, however, provides a better 
understanding of the dynamics and complexities of the disease diffusion. 
Therefore, although several studies have investigated disparities in 
COVID-19, the spatiotemporal dynamics and complexities of this disease 
are still not fully considered. In light of the limitations of the previous 
studies, this study contributes to the literature with a novel event-based 
spatiotemporal model to spatiotemporal association relations discovery 
of disease diffusions. This model provides a way to identify the spatial 
units that exhibit similar behavior. The model was applied on COVID-19 
disease infection at ZIP Code level in New York City. The proposed 
model is the adoption of traditional association mining. In general, the 
output of these methods is shown in the text form, as A → B. The 
interpretation or understanding of results it this text form may have 
difficulties in practice, in particular, when the results are too numerous 
to interpret. To overcome this issue, a map visualization method was 

introduced to better picture the association patterns and rules between 
spatial units. This visualization approach provides an asset to clarify 
cause and effect relations between areas in the diffusion process. 
Although predicting the spatiotemporal evolution of the infectious dis-
ease and recognizing the factors that lead to this evolution are of great 
importance for the prevention and control of the diffusion, these issues 
are not investigated in this paper and will be left for future studies. 

2. Materials and methods 

2.1. Study area and data sources 

This study was conducted in NYC, located in New York State. With a 
population of approximately 8.4 million residents and an area of over 
302.6 square miles (784 km2), this city is the most populated city not 
only in its state, but also in the United States (Zangari et al., 2020). NYC 
consists of five boroughs: The Bronx, Brooklyn, Manhattan, Queens, and 
Staten Island. Manhattan is the most and Staten Island is the least 
populated borough (Fig. 1.a). The city’s public hospitals have suffered 
from various diseases for centuries; among these are yellow fever, 
cholera, HIV/AIDS in the 18th, 19th, and 20th centuries, respectively, 
and Ebola just more recently (Chokshi & Katz, 2020). Shortly after the 
first coronavirus laboratory-confirmed case was reported (February 29, 
2020), NYC experienced exponential growth in the COVID-19 rates and 
emerged as an early epicenter of the pandemic (Lara-Reyna et al., 2020). 
Each epidemic has brought some challenges for the governors. On March 
20, the governor of New York announced the implementation of "New 
York State on PAUSE" executive order. It was a 10-point policy regarding 
lockdown measures, social distancing measures, closing all non-essential 
businesses statewide, and banning all non-essential gatherings of in-
dividuals temporarily (State, 2020). However, ever since, the corona 
outbreak in the city has fluctuated widely. 

In this study, the data on rate of COVID-19 cases per 100,000 people 
COVID-19 were obtained from the NYC Health Department repository 
on GitHub (NYC-Health, 2022). This dataset was stratified by week and 
modified ZIP Code Tabulation Area (ZCTA) for 75 weeks from August 2, 
2020, to January 8, 2022.The rate of cases is calculated through the 
following equation (Eq. 1): 

Rate of cases =
The count of COVID − 19 cases in a ZCTA

The population of the ZCTA
× 100, 000

(1) 

The data excluded records with missing geographic information and 
was published using diagnosis date. This reporting approach better 
represents the time of onset of symptoms or infection. Moreover, this 
dataset contains information on residence of people’s ZCTA at the time 
of reporting. Together, this information provides a more comprehensive 
understanding of how COVID-19 has spread in space and time in NYC. 

In Fig. 1.b, the weekly trends of cases rate per 100,000 people in the 
city and each borough are displayed. As it shows, Staten Island has the 
highest cases rate compared to the other boroughs, while Manhattan has 
the lowest cases rate. Nonetheless, the critical points for each borough 
have occurred at approximately the same time. Fig. 2 shows the distri-
bution of cumulative cases rate by ZCTA. It indicates that the outbreak 
was most severe in Staten Island and the central regions of the city, 
including the northern part of Brooklyn and the western part of Queens. 
The histogram of cases rate, stratified by ZCTA, is also shown in Fig. 2. 
For ease of discussion in the following sections, the map is labeled by ZIP 
Codes. Table 1 shows the summary statistics of data. 

2.2. Global spatial association 

To assess the overall spatial association of COVID-19 in NYC, global 
Moran’s I statistic was computed for each week. In a given period t, this 
statistic (It) measures the spatial autocorrelation through the following 
equation (Eq. 2) (O’sullivan & Unwin, 2003; Habibi et al., 2017): 

R. Habibi et al.                                                                                                                                                                                                                                  
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Where xi and xj, respectively, are cases rate in the ith and jth ZCTA, X̂ 

is the mean of cases rate in the entire city, Wij is the spatial weight 
between the ZIP Code area i and j, and n is the total number of ZCTAs. 

Fig. 1. a. New York City boroughs and modified ZIP Code Tabulation Areas (ZCTA) in each borough. b. Weekly trends of the rate of cases per 100,000 people 
throughout the New York City and its boroughs. 

Fig. 2. Map of cumulative cases rate by ZCTA and the histogram of data.  
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Index values fall between -1.0 and +1.0. The values greater than 0 show 
confirmed cases tend to cluster spatially, whereas negative values 
indicate a negative correlation and 0 values express insignificance. The 
closer the I statistic to one in absolute value, the stronger the spatial 
autocorrelation. 

2.3. Reprasentaion event-based spatiotemporal model 

2.3.1. Problem Definition 
It is reported that the distribution of COVID-19 cases does not follow 

a random distribution and implies a spatial dependence structure 
globally (Shariati et al., 2020; Huang, 2021; Islam et al., 2021) or locally 
(Xiong et al., 2020; Das et al., 2021). There are also studies that 
concluded the clustered structure of COVID-19 diffusion in New York 
City (Cordes & Castro, 2020; Maroko et al., 2020). It means some lo-
cations behave similarly in response to the increase or decrease of the 
cases rate. This fact authenticates similar underlying processes that 
happen at these places. There is a hypothesis-testing approach to 
assessing overall spatial characteristics and association relations mining. 
The null hypothesis, in this regard, is an independent random process 
(IRP) or complete spatial randomness (CSR). The outbreak, like any 
other spatial event, is expected not to match IRP/CSR and show spatial 
dependence (O’sullivan & Unwin, 2003). It is noteworthy that even if 

the distribution of spatial events conforms to IRP/CSR, there may still be 
spatial interdependence relations in the events pattern. The desired 
associated structure cannot be discovered in a snapshot of the spatio-
temporal event. It lies in examining the simultaneous spatiotemporal 
structure of the data, and refers to the existence of specific spatial events 
at particular places in several timestamps of an area. Although these 
events might not occur continuously, they can take place frequently in 
their specific places. This issue deals with the concept of frequent pat-
terns of events occurring in many timestamps of data. 

Dealing with frequent patterns would involve the realm of spatial co- 
location and co-occurrence patterns mining. Co-location patterns are 
subsets of spatial features whose instances frequently occur close to each 
other (Bao & Wang, 2019). Spatial co-location patterns can be inter-
preted as the result of interactions with spatial processes in which the 
outcomes at various locations are influenced by one another (Haining & 
Haining, 2003; Cai et al., 2019). “Induced spatial auto-correlations” lead 
to these patterns where an underlying variable that is itself spatially 
autocorrelated induces spatial autocorrelation of each feature (Dale & 
Fortin, 2014). On the other hand, co-occurrence patterns represent 
subsets of spatial features that are often located together in space and 
time. Though these methods enhance our understanding of the spatial 
characteristics of an area and its association patterns, there are two 
drawbacks to the current applications of these methods, in the context of 
the current study. First, these applications consider two or more feature 
types, investigating their prevalent co-location/co-occurrence patterns. 
Whereas, studying association patterns of one event type reveals prob-
able spatial associations that are the result of interactions with spatial 
processes and determinants. Second, these applications consider spatial 
neighborhood constraints to generate candidate patterns. While, 

Table 1 
Summary of COVID-19 cases rate data in NYC.  

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

0.00 44.4 125.6 273.4 268.9 4841.8  

Fig. 3. An example of association relationships (between red points).  
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particular events of one feature might frequently happen in specific 
regions which are not close to each other. This fact implies underlying 
association relations between the regions towards the considered event, 
such as the outbreak of COVID-19. These relations are valuable re-
sources for the spatial structure of the whole study area. Therefore, an 
extension to such pattern mining with no neighborhood relationships 
constraint should be considered to recognize patterns that indicate the 
same spatial characteristics towards one feature. Fig. 3 demonstrates an 
example of this extension where all points refer to specific events of one 
feature that occurred in four timestamps. Although the distribution of 
events is different, there are events that happened at the particular 
places repeatedly, which are shown in red. Also, the point C is located in 
a cluster, while the other red points are not. It is evidence of interde-
pendence and association relations between these places which lead to 
this pattern, regardless of their distances. In current study, these re-
lationships are investigated to understand the dynamics of COVID-19 
outbreak better. 

2.3.2. Proposed model 
In the spatial or spatiotemporal analysis context, the concept of 

‘event’ focuses more on the occurrence of the geographic phenomena 
and usually involved with spatiotemporal dynamics (He et al., 2020). It 
is considered as a significant change in a spatial unit in the observation 
sequences. This concept varies from spatial features. In Geographic In-
formation Science (GIS) spatial features imply an object-oriented view in 
which objects are spatially homogeneous entities with distinct bound-
aries and locations. They usually exist in space and time constantly so 
that they can hold permanent identities. 

In this paper, the spatiotemporal structure of the coronavirus 
outbreak is studied as a complex geographic event. This complexity is 
simplified by considering an event in both space and time. Therefore, a 
conceptual framework is proposed to explore the complexity of COVID- 
19 outbreak and to discover the associated spatial units across the study 
area. In this context, a frequent spatiotemporal pattern is considered a 
repetitive occurrence of events at a specific timestamp throughout the 
study area. Typically, the frequent pattern mining techniques search for 
recurring relationships in a dataset (Han et al., 2011). Market basket 
analysis is a typical example of this process. The traditional co-location 
pattern mining is an extension of this analysis in geographical space 
(Shekhar & Huang, 2001). In this way, spatial patterns are transformed 
into transaction-type data. Then, association analysis methods such as 
Apriori and FP-Growth will be used to discover co-location patterns. The 
proposed methodology has two major differences from previous 
methods for identifying co-occurrence patterns. First, Boolean spatial 
features are considered to be spatial units as areal events. That is, they 
are unique entities, their locations are fixed over time, and there are no 
instances of them in the geographical space. Second, the neighborhood 
condition was ignored. In other words, every two instances of spatial 
units satisfy the spatial neighbor relationship. In this way, any spatial 
units that emerge as an event can participate in the pattern. Based on the 
proposed framework, basic concepts are explained as follows. 

Definition 1. Let the whole study area S is composed of m distinct 
spatial units, denoted as S = {s1, s2, …, sm}, and the time T is divided into 
n timespans, denoted as T = {Δt1, Δt2, …, Δtn}. 

Definition 2. Considering each timespan, if a spatial unit experiences 
the conditions where an event has occurred, it is called an instance of 
that spatial unit. 

Definition 3. An itemset (pattern) C (C⊆S) is a subset of spatial units 
whose instances emerge as events throughout the study area at a 
particular timespan Δti. The size of a pattern is the number of spatial 
units in it. 

Definition 4. To assess the significance of the obtained rules, the 

following metrics are calculated: support (Eq. 3), confidence (Eq. 4), and 
lift (Eq. 5). Suppose itemset C, where A ⊂ C, B ⊂ C, and A ∩ B = ∅. The 
support is a criterion indicating the probability of the simultaneous 
presence of A and B in rule A→B, and the confidence shows the accuracy 
of the generated rule of the Apriori Algorithm. The rules that satisfy 
minimum support and minimum confidence thresholds were considered 
as strong associated relations. The lift value is used to assess the good-
ness of the rule. It measures the correlation between two sets of spatial 
units so that if the lift value is smaller than one, the two sets are nega-
tively correlated; otherwise, both sets are positively correlated. In 
addition, the values equal to one express independency between two sets 
with no correlation (Mirhashemi & Mirzaei, 2021). 

support(A⇒B) = P(A ∪ B) (3)  

confidence(A⇒B) = P(B|A) (4)  

lift(A⇒B) =
P(B|A)
P(A)

(5)  

Definition 5. To investigate spatial association relationships and 
rules, the Apriori algorithm (Agrawal & Srikant, 1994) is implemented 
on the generated itemsets according to definition 3. This algorithm is 
based on the Apriori property stating “all nonempty subsets of a frequent 
itemset must also be frequent” (Han et al., 2011). Apriori is a frequent 
pattern mining approach. It is based on a level-wise search, where 
k-itemsets are used to explore (k +1)-itemsets. First, the set of frequent 
1-itemsets is determined by scanning all of the itemsets to count the 
overall incidence of each spatial unit in which events have occurred, as 
C1, and collecting those that satisfy minimum support, as L1. Next, L1 is 
used to find the set of frequent 2-itemsets, as L2. L2 is used to find L3, and 
so on, until no more frequent k-itemsets can be found. To discover Lk for 
k ≥ 2, a two-step process is followed, including join and prune. In the join 
step, a set of candidate k-itemsets is generated by joining Lk-1 with itself, 
denoted as Ck. Then, during the prune step, any member of Ck that does 
not meet the minimum support will be removed from Ck. Thus, Lk is 
determined. 

2.3.3. Events recognition 
To better understand the behavior of the COVID-19 outbreak, it is 

necessary to determine the status and activation time of each unit, in 
order to know where and when the events occurred. Beacause the rate of 
cases in each ZCTA is typically non-zero, and almost all ZCTAs (units) 
have had COVID-19 confirmed cases in each week during the period, a 
significant change in the rates can be considered as an event occurrence 
in each unit. In this regard, two scenarios were considered. In the first 
scenario (SC1), the changes between the rate of cases in two consecutive 
weeks were investigated (Δt = one week). In the second scenario (SC2), 
the changes between the rate of cases for three consecutive weeks were 
investigated (Δt = two weeks). There are ZCTAs in the city that are 
likely to be in high-risk clusters of the disease and have the highest rates 
of cases for multiple weeks. However, what plays a decisive role in 
identifying an event is the significant change in the area, regardless of 
whether these changes are located in outbreak clusters or not. These two 
senarios are considered to account for incubation and contagious pe-
riods, as well as the median time between the exposure and onset of 
symptoms which were estimated to be between 1 to 14 days (Wassie 
et al. (2020); (Elias et al., 2021); ABC-News (2022)). The combination of 
the results of two scenarios provides a broader picture of the association 
relations between different city areas. In each scenario, considering the 
upward or downward trend of the outbreak, the changes between the 
two rates in Δt may be positive or negative. Accordingly, both positive 
and negative differences were considered to investigate interactions and 
association relations more precisely. These changes are simplified as 
positive and negative events, where the absolute values are significant 
and more than predefined thresholds. The advantage of this approach is 

R. Habibi et al.                                                                                                                                                                                                                                  
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that both increasing and decreasing trends are studied in the areas; 
therefore, areas that behave similarly to the critical fluctuations in an 
epidemic can be accurately identified. 

In this regard, the changes between the rate of cases in both scenarios 
(considering two different Δt) were calculated. The summary of result-
ing data and their distribution in each scenario are shown in Table 2 and 
Fig. 4. 

As Fig. 4 depicts, the distribution of data is approximately bell- 
shaped, with most of the data clustered around the mean. Meanwhile, 
as shown in Fig. 2, the trend line grew very sharply in the last four weeks 
of the period, which skewed data slightly. However, despite the skewed 
distribution of the rate of cases, the growth of rate in both scenarios, 
weekly and biweekly basis of Δt, approximately follows a normal dis-
tribution. Therefore, the lower (first) and upper (third) quartiles of data 
in each scenario were selected as the thresholds. Regarding the data 
distribution, the lower quartile properly shows areas with higher 
negative growth, whereas the upper quartile indicates areas experi-
encing higher positive change in the rate of cases. Therefore, using this 
approach, areas that are statistically significant can be identified. 
Further, in each scenario, two situations were considered: positive 
events and negative events, making a total of four test cases (Table 3). 

2.4. Proposed map visualization 

As a rule of thumb, the extracted rules from the association rule 
mining techniques are shown in the text form, as A → B. Moreover, the 
huge volume of data probably leads to numerous generated rules in this 
form. Therefore, understanding or interpreting the results would be 
difficult and challenging. Since the proposed model is an adoption of the 
traditional association rule mining, it inherits these drawbacks. The 
generated association rules and relations from the proposed model may 
be too numerous to interpret. In addition, the interpretation of rules in 
the form of A → B may have difficulties in practice. In general, repre-
senting data in charts and maps makes the data understanding feasible 
and allows us to do it in much less time, especially when there is a large 
volume of data. To address this issue, a map visualization approach is 
introduced. This approach is adopted from the Apriori Property. Hence, 
all the significant rules of size 2, containing 2 spatial units, take part in 
the join step of the algorithm to generate candidate rules of size >2. In 
this regard, the proposed method represents association rules of size 2. 
This visualization approach is composed of a directional graph, in which 
each spatial unit is considered a node and If-Then relations to be mapped 
as directional edges. The length of each edge is the Euclidean distance 
between two spatial units. It means the rule “If spatial_unit_A, then spa-
tial_unit_B” leads to an edge from spatial_unit_A to spatial_unit_B. In 
addition, the edges are colored by their Euclidean distance. The longer 
the distance, the darker the color. The size and the hue of each node are 
graphically determined by the number of edges pointing out of the node 
or the number of edges pointing to the node. In general, this approach 
provides a proper way to reflect causal relationships between spatial 
units that are considered as ZCTAs in this study. If the number of edges 
pointing out of the node is considered, the darker and bigger node shows 
the more significant impact of that node/ZCTA on the other nodes/ 
ZCTAs. On the other hand, considering the number of edges pointing to 
the node, the darker and bigger node indicates node/ZCTA that have 
been more affected by the other nodes/ZCTAs. 

3. Results and discussions 

3.1. Global spatial association 

Fig. 5 displays the Z-score and Moran’s Index values of the global 
Moran’s I. Overall, the p-values are 0 or so small that they can be 
considered as 0, except the fifth week ending on September 5, 2020, for 
which the p-value is 0.1. Statistical tests conducted on the rate of cases 
are indicative of relatively strong autocorrelation and significant clus-
tering in most weeks, most significantly during the week 13th to the 
week 41st, as well as from the week 63rd, beginning of the sharp growth 
of rates in the city, to the end. The maximum and minimum values of 
Moran’s I and Z-score take place in the 72nd week (0.78 and 20.77) and 
5th week (0.09 and 2.57), respectively. Having Moran’s Index values 
positive and close to +1, high-rate areas are close to each other, while 
areas with lower cases rate cluster near other low values, generally. The 
clustered spatial structure of the city implies the existence of associated 
pairs of adjacent locations. This structure is also probable for the spatial 
distribution of infectious diseases such as COVID-19 due to the conta-
gious nature of the disease. Nevertheless, there are several underlying 
factors that have spatially varying effects on their propagation. How-
ever, there might be ZCTAs that are not neighbors and autocorrelated 
but are associated with each other. The following section is conducted to 
find such areas. 

3.2. Modeling results 

In this study, ZIP Code areas are considered spatial units of the 
proposed model (Section 3.2.2). Considering each scenario, the positive 
and negative events were detected in each ZIP Code area. Taking each Δt 
into account, the set of ZCTAs where the events occurred were identified 
as itemset of that period. After that, the proposed model was applied on 
all four test cases (Section 3.2.3). The minimum support and confidence 
values were set as 21% and 75% for SC1 and as 22% and 75% for SC2, 
respectively. In association rules mining, these thresholds are typically 
set subjectively, determining whether or not a pattern is prevalent, and 
consequently, a generated rule is interesting. Having a lower threshold 
may cause redundant rules, whereas setting a higher threshold may lead 
to the loss of rare relationships (Bao & Wang, 2019). In our case, the 
examination and implementation of the model suggest that the selected 
thresholds were the best for the purpose of the study. Fig. 6 reveals the 
basic steps of the proposed approach in which the diffusion of COVID-19 
in NYC was simplified. In step 1, the changes between cases rate in each 
Δt across ZCTAs of NYC were calculated. Taking each scenario into 
account, the ZIP Code areas satisfying the conditions of event occur-
rence, the brownish colors in Fig. 6, were recognized in step 2. After 
that, the itemset of ZCTA instances in each timespan is collected. In the 
next step, frequent patterns of events in NYC were found using Apriori 
algorithm. Finally, the spatiotemporal association structure of the 
outbreak was discovered using generated rules. 

In SC1, the model generates 36 rules for negative events (Test1) and 
151 rules for positive events (Test2), whereas, in SC2, the model 
detected 276 rules for negative events (Test3) and 4389 rules for posi-
tive events (Test4). These results are evidence of significant association 
relations between ZCTAs that are not necessarily in their adjacency. In 
both scenarios, negative events generated fewer rules in comparison to 
positive events, confirming the heterogeneity in the spatial structure of 
the city with respect to the disease reduction, intervention, and control. 
Unsurprisingly, this finding also demonstrates that COVID-19 is more 

Table 2 
Summary of data considering each scenario.  

SCENARIO MIN. 1ST QUARTILE MEDIAN MEAN 3RD QUARTILE MAX. 

SC1 -1406.04 -21.11 3.18 38.32 32.29 2883.42 
SC2 -4841.77 -30.02 5.25 38.04 51.31 4088.89  
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difficult to control than to spread. COVID-19, as an infectious disease, 
tends to diffuse into the area as the virus is seeded. Because of their 
proximity, autocorrelation, and social and cultural linkages, places that 
are adjacent to one another may be more likely to have similar infection 
rates and, consequently, shape spatial clusters (Arthur et al., 2017; 
Cordes & Castro, 2020). These reasons lead to more obtained association 
rules in positive events. 

Another finding that emerged from this study is that NYC reveals 
more associations in the second scenario (SC2). This means that when 
the differences in the cases rates were considered between three 
consecutive weeks, more ZCTAs with similar behavior towards the in-
crease or decrease of rates were identified. The likely reasons may be the 
average time of the transmission process, infectivity, the onset of 
symptoms, and the period that the patient can carry the disease. Table 4 
presents the top 20 strongest rules ordered by their support, confidence 
and lift, respectively. Considering support values, the most discovered 
associated situations are ranked as Test-4, Test-3, Test-2, Test-1. As it 
shows, most of the determined rules involve adjacent ZCTAs. According 

to the results of the global Moran’s I (Section 4.1), the spatial distribu-
tion of COVID-19 cases was clustered generally. Therefore, it is pre-
dictable that neighboring areas have association relationships. 
However, the discovered rules regarding for spatial structure of the city 
towards the trend of the outbreak are very interesting. Because they 
clarify implicit interdependence relationships between ZCTAs, which 
are not close together, and thus are not affected by adjacency relations 
such as autocorrelation. 

Taking the cumulative weekly rates of cases into account (Fig. 2), the 
discovered rules are classified into four categories: low to low, low to 
high, high to low, and high to high. Since the nature of the diffusion of 
infectious disease, high to high and high to low, in adjacent areas, are 
excepted. High-rate areas usually emerge as the epicenters in local scales 
and function as determinants of rising the infections in neighboring 
areas. The other generated strong rules are critical and desirable. 

ZIP Code numbers from 10,301 to 10,314 are located in Staten Is-
land. As it is mentioned in Section 2.1, compared to other boroughs, this 
borough experienced the most severe outbreaks. Expectedly, most of the 
discovered rules are related to the ZCTAs of this borough. In addition to 
the rules involving ZIP Codes of this borough on both sides, other rules 
are as follows in each situation. For ease in writing and discussing the 
results, any ZCTA is written as “Z”+ code. 

Test-1 (SC1- Negative Events): [11004] → [10006] is a very inter-
esting result. Z11004 is located in the easternmost part of the city, while 
Z10006 is in the western part. Another important point is a major 

Fig. 4. . Histograms of changes between rate of cases considering two scenarios of Δt: a. SC1 (Δt = one week), and b. SC2, (Δt = two weeks). The red lines show the 
median values and the blue ones indicate the mean values of data . 

Table 3 
Details of four test cases in the study.  

TEST NO. Test-1 Test-2 Test-3 Test-4 

EVENT_TYPE Negative Positive Negative Positive 
SCENARIO SC1 SC1 SC2 SC2  

Fig. 5. Weekly results of global Moran’s I statistic and Z-score on the rate of cases of COVID-19 at the ZCTA level.  

R. Habibi et al.                                                                                                                                                                                                                                  



Sustainable Cities and Society 87 (2022) 104187

8

difference in the total rate of cases between the two ZCTAs (Fig. 2). 
These values are 14,243 and 24,070, for Z11004 and Z10006, respec-
tively (a low to high rule). [10029] → [11239] and [11370] → [10464] 
are other strong rules, involving four boroughs except Staten Island. 
They are low to high, and high to low rule types, respectively. In addi-
tion to these rules, the other rules involving Staten Island ZIP Codes 
show interactions between these areas. 

Test-2 (SC1- Positive Events): Considering [11414] → [10282], 
Z11414 is in southern part of Queens with 23,146 cumulative value of 
cases rate. Z10282 is in Manhattan and its cumulative value was 13263. 
These two areas are distant and the higher cumulative cases rate area 
affects the lower one (High to low). In [11222] → [10005], Z11222 is in 
the north of Brooklyn and Z10005 is in the south of Manhattan; their 
cumulative values were 23370 and 21548, respectively. They have a 
common water border and the rule type is high to low. [11103] → 
[11414] is a rule from the center part of Queens to its southern part. The 
cumulative value of Z11103 was 25,517. So, it is also a high to low rule 
type. 

Test-3 (SC2- Negative Events): [10012] → [10004] shows the associ-
ation between close areas in the southern part of Manhattan. [10460] → 
[11422] is a distant high to low relation from The Bronx to Queens. The 
inverse of this rule is also a strong one. So, the relation is bilateral, as 
[10460] ↔ [11422]. The strong bilateral rules are remarkable, because 
they imply strong associations and interactions between areas. [11223] 
↔ [11230] is an inter-borough rule which relates to areas in Brooklyn 
with almost the same cumulative values (23461 and 23373, respec-
tively). [11419] ↔ [11421], [11370] → [11422], and [11434] → 
[11422] are indications of interdependence in near areas in Queens. 
[11214] → [11421], is a low to high rule from the southern part of 
Brooklyn to the western part of Queens. [11378] → [10312] is a high- 
value area of Queens (22930) to a higher value (29417) in Staten Is-
land (high to high). 

Test-4 (SC2- Positive Events): [11103] → [10307] and [10308] ↔ 
[11103] show associations between the northern part of Queens and 
Staten Island. The cumulative value of Z11103, Z10307, and Z10308 are 
25517, 29123, and 27460, respectively. Therefore, they are high-to-high 
rules. Other top generated rules involve ZIP Code areas of Staten Island, 

and thus they are all high-to-high types. Almost all association rules are 
bilateral. 

The above-mentioned rules show that in most cases, rules relate 
the regions with a higher cumulative rate of cases to the regions 
with lower cumulative rates. However, there were instances where 
the rules connected regions with lower rates to higher rates and 
even instances with associations between regions with almost the 
same number of cumulative rates. In addition, most of the associ-
ation relations in all four tests belonged to ZIP Code areas that are 
distant and not adjacent to each other. Among all tests, there are 
areas associated to Staten Island. It is a significant result that this 
borough became the main driver of the outbreak within NYC. 

To explore the finding rules better, the common rules in different 
tests are presented in Table 5. As it depicts, the common association 
rules are [10301] → [10312], [10312] → [10301], and [10304] → 
[10309]. These areas are located in Staten Island, but they are not in 
close proximity to each other. As mentioned previously, COVID-19 has 
been more prevalent in Staten Island compared to the other boroughs in 
NYC. This result addresses significant interdependence and association 
relations in this island, indicating that human mobilities and that human 
mobilities and other determinants affecting the behavior of the COVID- 
19 act similarly there. Although the effect of population is adjusted in 
calculating the rate of cases, another likely reason for this is the smaller 
population in this borough compared to the other boroughs. The higher 
population may lead to an increase in human mobility. This mobility 
interferes with spatial processes affecting the spread of the disease, and 
leads to the role of the other determinants being impaired. So, in this 
borough, the influence of the other underlying processes is more robust. 

Beyond these findings, the obtained rules were visualized for all four 
tests using the proposed map visualization approach in Figs. 7 and 8. 
This approach is based on spatiotemporal association relations results, 
clarifying the causal relationships between ZCTAs. For the ease of 
measuring the influence of a ZIP Code area on the prevalence of the 
COVID-19 and determining how much it is affected by other infected ZIP 
Code areas, two maps were created for each test: 1) showing the number 
of edges pointing out of any ZCTA (causality map), and 2) representing 
the number of edges pointing to it (affected map). Therefore, novel maps 

Fig. 6. Basic steps of the proposed approach.  
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of the spatial inequality in COVID-19 considering the participation of 
any ZCTA in association relations were drawn. These maps provide 
noticeable information that could not be understood from the rules in 
text form alone. They can reflect the influential extent of each ZCTA in 
association relations. In this context, any ZCTA is considered a node. 
Taking the causality map into account, the greater number of edges 
pointing out of the nodes shows its ZCTA has more influence over the 
prevalence of COVID-19 in NYC. Moreover, considering the affected 
map, the more edges pointing to the nodes, the more affected it is. In 
both map types, as the number of edges increases, the circles of each 
relating node become larger and darker, demonstrating the stronger 
interdependence relationships of their ZCTAs with the other areas. 

As is depicted in Fig. 7, in “Test1_SC1, Negative Events”, there were 
some dispersed nodes in both “affected map” and “causality map” mainly 
concentrated on Staten Island. In addition, considering the causality 
map, Z10464 in The Bronx and Z10029 in Manhattan and regarding the 
affected map, Z10006 in Manhattan and Z10464 in The Bronx were 
relatively significant. 

Considering “Test2_SC1, Positive Events”, the distribution of causative 
nodes was more homogeneous than affected nodes. Further, Z10309 and 
Z10307 in Staten Island, and Z11414 in Queens emerged as affected 
centers in the southern part of the city. 

As positive events investigate ZCTAs’ behavior towards the increase 
of COVID-19 cases rate, it clarifies increased incidence of the COVID-19 

in these ZIP Code areas is under the influence of the other regions of the 
city that have edges pointing to them. Additionally, the darker edges are 
those indicating association relations in far distances. As Fig. 7 shows, 
most of the edges are dark and reflect the interdependence relation 
between the areas located at long distances from each other. Another 
interesting rule is [11414] → [10307], indicating a distant association 
from Queen to Staten Island, and also a relation between the two 
affected centers. 

In Fig. 8, the discovered association rules concerning Δt=2 weeks 
(SC2) are represented. As it shows, the rules are more than found rules in 
SC1, especially when positive events are considered (Test4). Similar to 
SC1, the discovered rules in negative events are fewer than the positive 
events. In Test4, the concentration of rules was mainly on Staten Island, 
whereas the distribution was more balanced considering Test3. While, 
both “affected map” and “causality map” have the same significant nodes, 
approximately. Z10476, Z11421, Z11233, Z10305, and Z10312 in Test3 
and also Z11103, Z11235, and Z10306 in Test4 are such examples. 
Considering Test4- affected map, the most of significant nodes are located 
in Staten Island. While, the prominent nodes in the other three maps are 
relatively dispersed. 

In addition, the dominant implicit spatial structure of the associated 
areas is different in Test3 and Test4, which are north-south and 
southwest-northeast, respectively. However, there is no a very specific 
geospatial direction in the implicit connecting links between associated 

Table 4 
Top 20 generated associated rules from each scenario.  

Rule NO. Test-1 (SC1- Negative Events)  Test-2 (SC1- Positive Events) 
Rule Support Confidence Lift  Rule Support Confidence Lift 

1 [10312] → [10308] 0.26 0.90 2.39  [11414] → [10282] 0.26 0.79 1.95 
2 [10306] → [10310] 0.24 0.82 2.16  [10301] → [10309] 0.26 0.86 2.28 
3 [10309] → [10307] 0.24 0.86 2.19  [10304] → [10309] 0.26 0.83 2.18 
4 [11004] → [10006] 0.23 0.77 1.68  [10304] → [10312] 0.26 0.83 2.66 
5 [10029] → [11239] 0.23 0.81 2.30  [10312] → [10304] 0.26 0.83 2.66 
6 [10301] → [10308] 0.23 0.89 2.36  [10306] → [10309] 0.26 0.86 2.28 
7 [10304] → [10308] 0.23 0.81 2.14  [11414] → [10307] 0.26 0.79 2.09 
8 [10452] → [10307] 0.23 0.85 2.17  [10312] → [10309] 0.26 0.83 2.18 
9 [10312] → [10310] 0.23 0.81 2.14  [11235] → [10309] 0.26 0.83 2.18 
10 [10462] → [10310] 0.23 0.81 2.14  [11222] → [10005] 0.24 0.78 2.00 
11 [11369] → [10310] 0.23 0.81 2.14  [10301] → [10304] 0.24 0.82 2.63 
12 [10301, 10312] → [10308] 0.22 1.00 2.64  [10304] → [10301] 0.24 0.78 2.63 
13 [10301, 10308] → [10312] 0.22 0.94 3.32  [10301] → [10312] 0.24 0.82 2.63 
14 [10310, 10312] → [10308] 0.22 0.94 2.49  [10312] → [10301] 0.24 0.78 2.63 
15 [10301] → [10312] 0.22 0.84 2.97  [10304] → [10307] 0.24 0.78 2.07 
16 [11436] → [10310] 0.22 0.84 2.23  [10306] → [10307] 0.24 0.82 2.16 
17 [10465] → [10464] 0.22 0.84 2.08  [10312] → [10307] 0.24 0.78 2.07 
18 [11370] → [10464] 0.22 0.84 2.08  [10310] → [10309] 0.24 0.75 1.98 
19 [10301] → [10308, 10312] 0.22 0.84 3.28  [11229] → [10309] 0.24 0.95 2.50 
20 [10308, 10312] → [10301] 0.22 0.84 3.28  [11103] → [11414] 0.24 0.82 2.52            

Test-3 (SC2- Negative Events)  Test-4 (SC2- Positive Events)  
Rule Support Confidence Lift  Rule Support Confidence Lift 

1 [10308] → [10312] 0.27 0.91 2.80  [10307] → [10309] 0.31 0.79 2.10 
2 [10312] → [10308] 0.27 0.83 2.80  [10309] → [10307] 0.31 0.82 2.10 
3 [10312] → [10314] 0.27 0.83 2.94  [10306] → [10307] 0.30 0.92 2.34 
4 [10314] → [10312] 0.27 0.95 2.94  [10307] → [10306] 0.30 0.76 2.34 
5 [10012] → [10004] 0.26 0.79 1.83  [10306] → [10309] 0.30 0.92 2.42 
6 [10460] → [11422] 0.26 0.90 2.91  [10309] → [10306] 0.30 0.79 2.42 
7 [11422] → [10460] 0.26 0.83 2.91  [10308] → [10309] 0.30 0.81 2.15 
8 [11223] → [11230] 0.26 0.79 2.66  [10309] → [10308] 0.30 0.79 2.15 
9 [11230] → [11223] 0.26 0.86 2.66  [10301] → [10304] 0.28 0.88 2.59 
10 [10301, 10308] → [10312] 0.24 1.00 3.08  [10304] → [10301] 0.28 0.84 2.59 
11 [10301, 10312] → [10308] 0.24 1.00 3.36  [10306] → [10308] 0.28 0.88 2.40 
12 [11419] → [11421] 0.24 0.95 3.34  [10308] → [10306] 0.28 0.78 2.40 
13 [11378] → [10312] 0.24 0.90 2.78  [11103] → [10307] 0.28 0.88 2.23 
14 [11370] → [10473] 0.24 0.90 3.03  [10308] → [11103] 0.28 0.78 2.40 
15 [11214] → [11421] 0.24 0.90 3.17  [11103] → [10308] 0.28 0.88 2.40 
16 [11370] → [11422] 0.24 0.90 2.90  [10306] → [10307, 10309] 0.28 0.88 2.82 
17 [11434] → [11422] 0.24 0.90 2.90  [10309] → [10306, 10307] 0.28 0.75 2.52 
18 [10308, 10312] → [10301] 0.24 0.90 3.17  [10306, 10307] → [10309] 0.28 0.95 2.52 
19 [10308] → [10301, 10312] 0.24 0.82 3.36  [10306, 10309] → [10307] 0.28 0.95 2.44 
20 [11421] → [11419] 0.24 0.86 3.34  [10307, 10309] → [10306] 0.28 0.91 2.82  
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areas in SC1. This kind of spatial structure can be inferred as the impact 
of directional parameters in the severity and weakness of disease spread, 
such as wind direction. Another likely reason for this is human mobility, 
as the main driver of the outbreak, that does not happen in a particular 
direction. 

Considering both scenarios, it results that SC2 (Δt=2 weeks) better 
reveals association relations between ZCTAs and clarifies the spatial 
structure of the outbreak in NYC. 

4. Conclusions 

More than two years from the first officially reported case of COVID- 
19, while new variants have emerged, the world continues to fight the 
COVID19 pandemic. Investigating the spatial structure of the pandemic 
makes it feasible to determine its underlying driving processes. The 
existing methods mainly investigate the association relations consid-
ering randomness, dispersion, or clustered structure of the space in each 
time frame, while there might be associated areas that are not adjacent 

and have the same behavior towards the severity or weakness of the 
outbreak. In this context, the main aim of this study was to recognize 
association relations in spatiotemporal dynamics of infectious disease, in 
which their severity and spatial structure continuously change in space 
and time. To this goal, an event-based spatiotemporal model was pro-
posed and applied on the weekly rate of cases of COVID-19 in New York 
City at the ZIP Code level. 

The first advantage of the model was the exploration of COVID-19 as 
a spatiotemporal event considering two different periods scenarios in 
NYC (one and two weeks). Moreover, the event is derived from the trend 
of cases rate over a period, not the number of cases themselves. Hence, 
the effect of changes in underlying processes and human interactions is 
better understood. Second, the proposed model does not consider ad-
jacency relationships and searches the whole study area to find associ-
ated ZCTAs. Also, the discovered relationships were independent of the 
cumulative values of cases rate or its cluster structure in the city. The 
third advantage was the integration of time into the association relations 
discovery. Since weekly positive and negative events were used in the 

Table 5 
Common recognized spatiotemporal association rules between two scenarios and two event type.  

Test NO. Test-1 Test-2 Test-3 
Test-2 [10301] → [10312]      

[10304] → [10309]      
[10312] → [10301]     

Test-3 [10301] → [10308] [10301] → [10304] [10305] → [10312]    
[10301] → [10312] [10304] → [10301] [10306] → [10309]    
[10312] → [10301] [10301] → [10312] [10310] → [10309]    
[10304] → [10309] [10312] → [10301] [10312] → [10309]    
[10309] → [10306] [10305] → [10304] [10314] → [10312]    
[10312] → [10308] [10304] → [10309] [10460] → [10312]     

[10304] → [10312] [11223] → [11230]   
Test-4 [10301] → [10308] [10301] → [10304] [11223] → [11230] [10301] → [10304] [11235] → [10473]  

[10301] → [10312] [10304] → [10301] [11229] → [11235] [10304] → [10301] [10473] → [11421]  
[10312] → [10301] [10301] → [10306] [10301, 10304] → [10309] [10301] → [10308] [11379] → [11103]  
[10304] → [10308] [10306] → [10301] [10301, 10309] → [10304] [10301] → [10312] [11103] → [11421]  
[10304] → [10309] [10301] → [10307] [10304, 10309] → [10301] [10312] → [10301] [11421] → [11103]  
[10309] → [10306] [10301] → [10309] [10301, 10304] → [10312] [10302] → [10309] [11223] → [11230]  
[10306] → [10310] [10301] → [10312] [10301, 10312] → [10304] [10460] → [10302] [11230] → [11223]  
[10312] → [10306] [10312] → [10301] [10304, 10312] → [10301] [10304] → [10305] [11230] → [11224]  
[10309] → [10307] [11209] → [10301] [10301, 10306] → [10309] [10305] → [10304] [11224] → [11421]  
[10312] → [10308] [11694] → [10302] [10301, 10309] → [10306] [10304] → [10309] [11421] → [11224]  
[10312] → [10310] [10303] → [10306] [10306, 10309] → [10301] [10304] → [10312] [11229] → [11230]  
[10301, 10308] → [10312] [10303] → [10309] [10301, 10306] → [10312] [10314] → [10304] [11230] → [11229]  
[10301, 10312] → [10308] [10305] → [10304] [10301, 10312] → [10306] [10305] → [10308] [11235] → [11421]  
[10308, 10312] → [10301] [10304] → [10307] [10306, 10312] → [10301] [10305] → [10309] [11421] → [11235]  
[10312] → [10308, 10310] [10304] → [10309] [10301, 10307] → [10309] [10305] → [10312] [10301, 10308] → [10312]  
[10308, 10310] → [10312] [10304] → [10312] [10301, 10309] → [10307] [10312] → [10305] [10301, 10312] → [10308]  
[10308, 10312] → [10310] [10312] → [10304] [10302, 10307] → [10309] [10305] → [10314] [10308, 10312] → [10301]  
[10310, 10312] → [10308] [11694] → [10304] [10302, 10309] → [10307] [10314] → [10305] [10314] → [10308, 10312]   

[10305] → [10312] [10304, 10307] → [10309] [10306] → [10309] [10308, 10312] → [10314]   
[10306] → [10307] [10304, 10309] → [10307] [10309] → [10306] [10308, 10314] → [10312]   
[10306] → [10309] [10307, 10309] → [10304] [10306] → [10312] [10312, 10314] → [10308]   
[10454] → [10306] [10304, 10307] → [10312] [10308] → [10309]  

Test NO. Test-1 Test-2 Test-3 
Test-4  [11209] → [10306] [10304, 10312] → [10307] [10312] → [10308]   

[10312] → [10307] [10307, 10312] → [10304] [10314] → [10308]   
[10314] → [10307] [10304, 10309] → [10312] [10310] → [10309]   
[11369] → [10307] [10304, 10312] → [10309] [10312] → [10309]   
[11379] → [10307] [10309, 10312] → [10304] [10314] → [10309]   
[11414] → [10307] [10306, 10307] → [10309] [10465] → [10309]   
[11433] → [10307] [10306, 10309] → [10307] [11378] → [10309]   
[10310] → [10309] [10307, 10309] → [10306] [11421] → [10309]   
[10312] → [10309] [10306, 10309] → [10312] [10312] → [10314]   
[11209] → [10309] [10306, 10312] → [10309] [10314] → [10312]   
[11229] → [10309] [10309, 10312] → [10306] [10460] → [10312]   
[11235] → [10309] [10306, 10309] → [11235] [11103] → [10312]   
[11379] → [10309] [11235, 10306] → [10309] [11378] → [10312]   
[10314] → [10310] [11235, 10309] → [10306] [10454] → [11103]   
[10314] → [10312] [10307, 10309] → [10312] [10465] → [11235]   
[10460] → [10312] [10307, 10312] → [10309] [11224] → [10470]   
[11420] → [10312] [10309, 10312] → [10307] [11235] → [10470]   
[11414] → [11103] [11235, 10307] → [10309] [11691] → [10470]   
[11433] → [11103] [11235, 10309] → [10307] [10473] → [11235]  
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proposed model, it can detect associated areas that are seamlessly in-
tegrated into spatiotemporal complexities and dynamics of the diffusion. 
In other words, the proposed model sifts through the dynamics of the 
disease and clarifies associations in a heterogeneous space. 

The results showed that in addition to interdependence relations 
between close areas, there exist remote areas having association re-
lations. Moreover, there were three types of generated rules: (1) rules 
involving a high rate of cases areas, in particular, detected rules in Staten 
Island, (2) rules that were a combination of high and low rate of cases, 
mainly between Staten Island and other boroughs, (3) rules regarding 
low-rate areas. The latter was very interesting due to their long distances 
and the low value of cases rate. Regarding autocorrelation and human 
mobility, type 1 and 2 are very probable. The local epicenter affects 
other areas directly, whether high rate or low rate. At the same time, 
association relations among remote areas experiencing a lower rate of 
cases implies that the same underlying processes have been triggered 

consequently. 
Different prevention and control policies and programs in several 

areas can vary the behavior of these regions about the spread of the 
disease and thus the event occurrence. Since this study was performed in 
a city, this factor had the same effect on all the results. Hence, the ob-
tained results purely reflect interdependent relationships between 
various ZIP code areas, considering both the human mobility and the 
behavior towards the pandemic and also underlying factors. However, 
there are several factors involved in this association relations that should 
be investigated in detail in the future. 

In addition to the proposed model, a map visualization approach was 
introduced that maps a massive number of rules into a single 2D map. 
This method provides a comprehensive picture of the discovered asso-
ciation patterns and rules. In this study, the method represented caus-
ative areas and those are affected by other areas concerning the diffusion 
of COVID-19 on the geographical surface of the map. In this way, distant 

Fig. 7. (a) Test1, affected map. (b) Test1, causality map. (c) Test2, affected map. (d) Test2, causality map.  
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associated areas and critical ZCTAs are properly revealed. This 
achievement is not possible via traditional association rule mining re-
sults that have been shown in text format. The findings and proposed 
visualization approach of this study shed some light on how ZIP code 
areas contribute to the COVID-19 inequality. It will be helpful for gov-
ernors and policy makers to adopt better local policies to overcome 
COVID-19. 
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